Remote sensing approaches to measuring inland water quality date back nearly 50 years to the beginning of the satellite era. Over this time span, hundreds of peer-reviewed publications have demonstrated promising remote sensing models to estimate biological, chemical, and physical properties of inland waterbodies. Until recently, most of these publications focused largely on algorithm development as opposed to implementation of those algorithms to address specific science questions. This slow evolution contrasts with terrestrial and oceanic remote sensing, where methods development in the 1970s led to publications focused on understanding spatially expansive, complex processes as early as the mid-1980s. This review explores the progression of inland water quality remote sensing from methodological development to scientific applications. We use bibliometric analysis to assess overall patterns in the field and subsequently examine 236 key papers to identify trends in research focus and scale. The results highlight an initial 30 year period where the majority of publications focused on model development and validation followed by a spike in publications, beginning in the early-2000s, applying remote sensing models to analyze spatiotemporal trends, drivers, and impacts of changing water quality on ecosystems and human populations. Recent and emerging resources, including improved data availability and enhanced processing platforms, are enabling researchers to address challenging science questions and model spatiotemporally explicit patterns in water quality. Examination of the literature shows that the past 10–15 years has brought about a focal shift within the field, where researchers are using improved computing resources, datasets, and operational remote sensing algorithms to better understand complex inland water systems. Future satellite missions promise to continue these improvements by providing observational continuity with spatial/spectral resolutions ideal for inland waters.
Satellite estimates of inland water quality have the potential to vastly expand our ability to observe and monitor the dynamics of large water bodies. For almost 50 years, we have been able to remotely sense key water quality constituents like total suspended sediment, dissolved organic carbon, chlorophyll a, and Secchi disk depth. Nonetheless, remote sensing of water quality is poorly integrated into inland water sciences, in part due to a lack of publicly available training data and a perception that remote estimates are unreliable. Remote sensing models of water quality can be improved by training and validation on larger data sets of coincident field and satellite observations, here called matchups. To facilitate model development and deeper integration of remote sensing into inland water science, we have built AquaSat, the largest such matchup data set ever assembled. AquaSat contains more than 600,000 matchups, covering 1984–2019, of ground‐based total suspended sediment, dissolved organic carbon, chlorophyll a, and SDDSecchi disk depth measurements paired with spectral reflectance from Landsat 5, 7, and 8 collected within ±1 day of each other. To build AquaSat, we developed open source tools in R and Python and applied them to existing public data sets covering the contiguous United States, including the Water Quality Portal, LAGOS‐NE, and the Landsat archive. In addition to publishing the data set, we are also publishing our full code architecture to facilitate expanding and improving AquaSat. We anticipate that this work will help make remote sensing of inland water accessible to more hydrologists, ecologists, and limnologists while facilitating novel data‐driven approaches to monitoring and understanding critical water resources at large spatiotemporal scales.
Rivers are among the most degraded ecosystems on earth (Best, 2019). Water quality is impaired due to human activities such as agriculture and urbanization (Foley et al., 2005; Meybeck et al., 1990), and currently only 23% of earth's largest rivers flow uninterrupted to the ocean (Grill et al., 2019; Nilsson et al., 2005). Because large rivers integrate millions of kilometers of land area, understanding rivers and their impairments is inherently macroscale: both distant and local impacts generate the patterns we observe (Heffernan et al., 2014; McCluney et al., 2014). There is a profound need for integrative water quality measurements that are spatially explicit and globally scalable, as local and global changes impairing Earth's rivers cannot be fully understood using sparse, ground-based measurements (Stanley et al., 2019; Stets et al., 2020). Remote sensing enables spatially explicit, global observations of large rivers (Palmer et al., 2015). Satellite missions, such as the joint NASA/USGS Landsat mission, have been used for decades to measure river and lake water quality (Brezonik et al., 2005; Carpenter & Carpenter, 1983). However, measuring water quality at continental to global scales remains challenging over inland waters due to optical complexity, or the presence of multiple water quality constituents (Ross et al., 2019; Topp et al., 2020). The three main constituents are chlorophyll-a (chl-a), suspended sediment, and colored dissolved organic matter (CDOM) (Davies-Colley et al., 2003; Ritchie et al., 2003). These water quality constituents are ecologically important, control light availability for photosynthesis and photodegradation, and together determine the color of water which is an integrative measure of water quality (
Remote sensing approaches to measuring inland water quality date back nearly 50 years to the beginning of the satellite era. Over this time span, hundreds of peer reviewed publications have demonstrated promising remote sensing models to estimate biological, chemical, and physical properties of inland waterbodies. Until recently, most of these publications focused largely on algorithm development as opposed to implementation of those algorithms to address specific science questions. This slow evolution contrasts with terrestrial and oceanic remote sensing, where methods development in the 1970s led to publications focused on understanding spatially expansive, complex processes as early as the mid-1980s. This review explores the progression of inland water quality remote sensing from methodological development to scientific applications. We use bibliometric analysis to assess overall patterns in the field and subsequently examine 236 key papers to identify trends in research focus and scale. The results highlight an initial 30-year period where the majority of publications focused on model development and validation followed by a spike in publications, beginning in the early-2000s, applying remote sensing models to analyze spatiotemporal trends, drivers, and impacts of changing water quality on ecosystems and human populations. Recent and emerging resources, including improved data availability and enhanced processing platforms, are enabling researchers to address challenging science questions and model spatiotemporally explicit patterns in water quality. Examination of the literature shows that the past 10-15 years has brought about a focal shift within the field, where researchers are using improved computing resources, data sets, and operational remote sensing algorithms to better understand complex inland water systems. Future satellite missions promise to continue these improvements by providing observational continuity with spatial/spectral resolutions ideal for inland waters.
The airborne AirSWOT instrument suite, consisting of an interferometric Ka-band synthetic aperture radar and color-infrared (CIR) camera, was deployed to northern North America in July and August 2017 as part of the NASA Arctic-Boreal Vulnerability Experiment (ABoVE). We present validated, open (i.e., vegetation-free) surface water masks produced from high-resolution (1 m), co-registered AirSWOT CIR imagery using a semi-automated, object-based water classification. The imagery and resulting high-resolution water masks are available as open-access datasets and support interpretation of AirSWOT radar and other coincident ABoVE image products, including LVIS, UAVSAR, AIRMOSS, AVIRIS-NG, and CFIS. These synergies offer promising potential for multi-sensor analysis of Arctic-Boreal surface water bodies. In total, 3167 km 2 of open surface water were mapped from 23,380 km 2 of flight lines spanning 23 degrees of latitude and broad environmental gradients. Detected water body sizes range from 0.00004 km 2 (40 m 2 ) to 15 km 2 . Power-law extrapolations are commonly used to estimate the abundance of small lakes from coarser resolution imagery, and our mapped water bodies followed power-law distributions, but only for water bodies greater than 0.34 (±0.13) km 2 in area. For water bodies exceeding this size threshold, the coefficients of power-law fits vary for different Arctic-Boreal physiographic terrains (wetland, prairie pothole, lowland river valley, thermokarst, and Canadian Shield). Thus, direct mapping using high-resolution imagery remains the most accurate way to estimate the abundance of small surface water bodies. We conclude that empirical scaling relationships, useful for estimating total trace gas exchange and aquatic habitats on Arctic-Boreal landscapes, are uniquely enabled by high-resolution AirSWOT-like mappings and automated detection methods such as those developed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.