Abstract. One of the most popular research areas is low-cost navigation and positioning systems for autonomous vehicles. Determining a vehicle's position within a lane is critical for achieving high automation. Vehicle navigation and positioning relied heavily on the Global Navigation Satellite System (GNSS) service in open-sky scenarios. Nonetheless, GNSS signals were easily degraded due to various environmental situations such as urban canyons caused by multi-path effects and Non-Line-of-Sight (NLOS) issues. To perform robustly in complex scenarios, sensor fusion is the most common solution. The following paper presents a radar visual odometry framework to improve the lack of scale factors for monocular cameras and poor angular resolution for radar. The framework is based on the characteristics of camera and radar sensors which have complementary advantages in each other. The results show that the proposed framework can be used to estimate general 2D motion in an indoor environment and correct the unknown scale factor of Monocular Visual Odometry in a real-world setting.
Abstract. The navigation means the process of determining the position, velocity, and orientation of the moving object such as the land vehicle, aerial vehicle, and even autonomous vehicle. Nowadays, Global Navigation Satellite System (GNSS) is most used for positioning. Nevertheless, the navigation system based on GNSS would be interrupted in the challenging environments. Therefore, the inertial navigation system (INS) has been widely combined with GNSS to overcome this issue. For INS, the core concept is the measurements of Inertial Measurement Unit (IMU). In order to integrate the measurements of IMU with several sensors such as GNSS receivers, odometers, and so on, we should transform the measurements of IMU from body frame to navigation frame. The initial alignment just represents the process of finding the accurate initial rotation matrix between body frame and navigation frame in the beginning of navigation. However, initial misalignment angles would cause large error of INS. Hence, obtaining an accurate initial rotation matrix from body frame to navigation frame is an important issue to get the better navigation performance. In the research, an integrated navigation system is developed to validate the initial alignment algorithm. With the data pre-processing and accurate calibration. the proposed method of initial alignment can get precise initial ration matrix. The errors of roll pitch, and yaw angle are all smaller than 1 degree after initial alignment. Moreover, the time threshold of initial alignment is set by manual traditionally. A method of finding threshold of coarse alignment is proposed in this research.
Abstract. In recent years, most people use commercial integrated navigation systems to develop navigation algorithms. However, due to the different levels of sensors on the market, it is difficult to customize commercial systems and leads to limited development of navigation algorithms. Therefore, the purpose of this research is to develop a real-time integrated navigation system EGI-1000 (Embedded GNSS and INS) including software and hardware, and effectively reduce the cost with the commercial price. The real-time integrated navigation system EGI-1000 contains a navigation-grade IMU, IMU1000 and NovAtel OEM 7720 GNSS receiver module. In this research, the integration process can be divided into three parts. The first part is the integration of hardware, and the architecture diagram of the real-time integrated navigation system will be displayed. The second part is the pre-processing of data. In the multi-sensor time synchronization problem, this research will propose a method about cross-correlation to validate whether the timestamp of IMU data is delay. The last part is algorithm about fusing data from multiple sensors and motion constraints. Extended Kaman Filter (EKF) will be the core and motion constraints including Zero Velocity Update (ZUPT) and Non-Holonomic Constraints (NHC) are integrated in the Loosely Coupled (LC) scheme. The calibration of Inertial navigation Measurement Unit (IMU) will also be conducted to determine the parameter in algorithm. The results of the experiments will be shown in this paper. Both of hardware and navigation algorithm in the integrated navigation system of this research are used to conduct multiple experiment including open sky environments, GNSS challenging environments, and GNSS denied environment. In comparison with the reference data, the navigation accuracy of the developed integrated navigation system can achieve centimeter-level accuracy (“Active Control” level and “Where in lane” level) in open sky and GNSS challenging environments. According to the propagation error theory, the result in GNSS denied environment also meet the expected value. The navigation algorithm is also feasible for the commercial integrated navigation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.