The extensive dissemination of imipenem-resistant A. baumannii clonal strains causing episodes of bacteremia and/or sepsis resulted from modes of transmission via multiple contaminated surfaces and objects and transiently colonized HCWs' hands. Closure of the ICU and its meticulous environmental decontamination led to the successful control of the outbreak.
Colonization pressure, the number of beds per nurse, and the treatment of all patients in private rooms correlated with the number of S. aureus acquisitions on an ICU. The amount of hand disinfectant used was correlated with the number of cases of MSSA acquisition but not with the number of cases of MRSA acquisition. The number of cases of patient-to-patient cross-transmission was comparable for MSSA and MRSA.
Objectives
We evaluated the in vitro activity of ceftolozane/tazobactam and comparator agents against MDR non-MBL Pseudomonas aeruginosa isolates collected from nine Greek hospitals and we assessed the potential synergistic interaction between ceftolozane/tazobactam and amikacin.
Methods
A total of 160 non-MBL P. aeruginosa isolates collected in 2016 were tested for susceptibility to ceftolozane/tazobactam and seven comparator agents including ceftazidime/avibactam. Time–kill assays were performed for synergy testing using ceftolozane/tazobactam 60 or 7.5 mg/L, corresponding to the peak and trough concentrations of a 1.5 g q8h dose, respectively, in combination with 69 mg/L amikacin, corresponding to the free peak plasma concentration. Synergy was defined as a ≥2 log10 cfu/mL reduction compared with the most active agent.
Results
Overall, ceftolozane/tazobactam inhibited 64.4% of the P. aeruginosa strains at ≤4 mg/L. Colistin was the most active agent (MIC50/90, 0.5/2 mg/L; 96.3% susceptible) followed by ceftazidime/avibactam (MIC50/90, 4/16 mg/L; 80.6% susceptible). GES-type enzymes were predominantly responsible for ceftolozane/tazobactam resistance; 81.6% of the non-producers were susceptible. MICs for the P. aeruginosa isolates selected for synergy testing were 2–32 mg/L ceftolozane/tazobactam and 2–128 mg/L amikacin. The combination of ceftolozane/tazobactam with amikacin was synergistic against 85.0% of all the isolates tested and against 75.0% of the GES producers. No antagonistic interactions were observed.
Conclusions
Ceftolozane/tazobactam demonstrated good in vitro activity against MDR/XDR P. aeruginosa clinical isolates, including strains with co-resistance to other antipseudomonal drugs. In combination with amikacin, a synergistic interaction at 24 h was observed against 85.0% of P. aeruginosa strains tested, including isolates with ceftolozane/tazobactam MICs of 32 mg/L or GES producers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.