The object of research is the process of thermal degradation of oil sludge in the presence of heterogeneous catalysts. The creation of efficient technological processes for processing the organic part of oil sludge into motor fuels, raw materials for petrochemicals and the disposal of microsilicate is an important urgent task, the solution of which will allow to obtain a significant economic and environmental effect. The problem to be solved is to establish the general kinetic laws of the process of thermal degradation of oil sludge in the presence of microsilicate with deposited metals. The advantage of the Ozawa– Flynn–Wall method is that it is possible to determine the kinetic parameters for each value of oil sludge conversion, that is, for different stages of thermal degradation. The activation energy of oil sludge 67.1 kJ/mol, and with a catalyst 59 kJ/mol are calculated for each degree of conversion (α), respectively. The value of the correlation coefficient was (R2≥0.997) provides good convergence with experimental results. Compared with other methods of thermal processing of oil sludge, catalytic thermal degradation has a number of advantages: relatively low process temperatures (400–650 °C), low sensitivity to the composition of raw materials and the processing process, which meets all modern requirements of chemical production. Regularities of thermokinetic parameters of thermal decomposition of oil sludge were studied using raw materials obtained during the process of oil transportation, in the presence of catalyst with applied metal (nickel, iron, cobalt) to microsilicate. Obtained results of oil sludge decomposition kinetics can be used in creating a database for mathematical modeling of process of heavy hydrocarbon raw materials processing
The thermal decomposition of low-temperature coal tar (LTCT) obtained from the coals of Shubarkol Komir JSC of the Republic of Qazaqstan in the presence of nanocatalysts with metal oxides (iron, cobalt and nickel) supported on microsilicate was studied for the first time. Microsilicate acts as a carrier and catalyst. Microsilicate is a product of the Karaganda silicon plant of “Tau-Ken.temir” LLP. The main chemical com-ponent of the original microsilicate is silicon oxide. The individual and chemical phase composition of the microsilicate was determined using X-ray spectral analysis. The particle size of the initial microsilicate and the mixture of microsilicate with metal oxide catalysts (nickel, cobalt, and iron) was determined using a nanosizer. Stages of thermal decomposition of LTCT and a mixture of LTCT with catalysts under conditions of programmed heating up to 640 °С in a nitrogen atmosphere have been established. On the basis of thermogravimetric analysis, the kinetic parameters (activation energy, mass loss rate, and pre-exponential fac-tor) of LTCT pyrolysis and mixture with added catalysts were determined. The modelless integral isoconversion Ozawa–Flynn–Wall method was used to determine the kinetic parameters. The values of the activation energy for the thermal destruction of the LTCT in the absence and presence of the nanocatalyst ranged from 54.04 to 297.5 kJ/mol. A kinetic compensation effect was revealed, probably due to the multi-component composition of the LTCT and the influence of added catalysts to the LTCT. The thermogravimetry method showed a high effect of the supported catalysts on the thermal degradation of LTCT. This method was used to determine the values of the activation energy and the pre-exponential degra-dation factor for the LTCT and the mixture with catalysts at different heating rates, which allows a detailed interpretation of the thermal analysis data. The obtained results of the kinetics of decomposition of LTCT can be used to create a database for mathematical modeling of the process of processing this type of raw material.
Currently, there is an interest in effective technologies that cause minimal environmental harm, have low financial costs and allow you to obtain products with high added value. One of the ways to increase the yield of light and medium fractions from oil bottom sediments is to use the electrohydraulic effect. The electrohydraulic phenomenon is a new industrial method of converting electrical energy into mechanical energy, which occurs without the influence of intermediate mechanical links, with high efficiency. Statistical processing of experimental data was carried out with the identification of the optimal mode of the electrohydraulic effect on the destruction of the oil bottom sediment. The influence of various factors is shown (duration of contact, distance between electrodes, amount of added catalyst, capacitance of capacitor and value of applied voltage). The use of the generalized equation made it possible to determine the following optimal conditions for the destruction of the oil bottom sediment using electrohydraulic treatment: duration 7 min, distance 8 mm, amount of added catalyst 1.5 %, capacitance 0.3 μF, applied voltage 14 kV. In terms of the significance of the coefficient (tr), it should be noted that the dominant factors are the distance between the electrodes and the amount of added catalyst. The individual chemical composition of the light and medium fractions of the original oil residue and the processed oil residue was determined. Comparison of the individual chemical composition of fractions up to 200 °С and 200–300 °С, obtained from the oil bottom sediment and from the hydrogenated product, allows to conclude that the electrohydraulic effect has an effective effect on the destruction of the organic mass of the oil bottom sediment. The optimal conditions for electrohydraulic treatment of the oil residue aere established and it is shown that it is possible to utilize the oil bottom sediments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.