Below the freezing point of silver, radiation thermometers are generally calibrated by implementing the multi-point interpolation method using blackbody measurements at three or more calibration points, rather than the ITS-90 extrapolation technique. The interpolation method eliminates the need to measure the spectral responsivity and provides greater accuracy at the longer wavelengths required below the silver point. This article identifies all the sources of uncertainty associated with the interpolation method, in particular, those related to the reference blackbody temperatures (either variable-temperature or fixed-point blackbodies) and to the measured thermometer signals at these points. Estimates are given of the 'normal' and 'best' uncertainties currently achievable. A model of the thermometer response is used to propagate all the uncertainties at the reference points and provide a total uncertainty at any temperature within the calibration range. The multi-point method has the effect of constraining the total uncertainty over this range, unlike the ITS-90 technique for which the uncertainties propagate as T 2 . This article is a joint effort of the working group on radiation thermometry of the Consultative Committee for Thermometry (CCT), summarizing the knowledge and experience of all experts in this field.
The triple point of water serves to define the kelvin, the unit of thermodynamic temperature, in the International System of Units (SI). Furthermore, it is the most important fixed point of the International Temperature Scale of 1990 (ITS-90). Any uncertainty in the realization of the triple point of water contributes directly to the measurement uncertainty over the wide temperature range from 13.8033 K to 1234.93 K.The Consultative Committee for Thermometry (CCT) decided at its 21st meeting in 2001 to carry out a comparison of water triple point cells and charged the BIPM with its organization.Water triple point cells from 20 national metrology institutes were carried to the BIPM and were compared with highest accuracy with two reference cells. The small day-to-day changes of the reference cells were determined by a least-squares technique. Prior to the measurements at the BIPM, the transfer cells were compared with the corresponding national references and therefore also allow comparison of the national references of the water triple point.This report presents the results of this comparison and gives detailed information about the measurements made at the BIPM and in the participating laboratories. It was found that the transfer cells show a standard deviation of 50 µK; the difference between the extremes is 160 µK. The same spread is observed between the national references.The most important result of this work is that a correlation between the isotopic composition of the cell water and the triple point temperature was observed. To reduce the spread between different realizations, it is therefore proposed that the definition of the kelvin should refer to water of a specified isotopic composition.The CCT recommended to the International Committee of Weights and Measures (CIPM) to clarify the definition of the kelvin in the SI brochure by explicitly referring to water with the isotopic composition of Vienna Standard Mean Ocean Water (VSMOW). The CIPM accepted this recommendation and the next edition of the SI brochure will include this specification.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
The EUROMET.T-K3 comparison is the regional extension of CCT-K3. The comparison involved the six European national metrology institutes (NMIs) previously involved in CCT-K3 (LNE-INM/CNAM, SMU, INRiM, NMi-VSL, NPL, PTB) and 18 additional European national laboratories. The comparison was divided into five different loops, each coordinated by a co-pilot chosen from the laboratories having participated in the CCT-K3 comparison. LNE-INM/CNAM played the role of pilot in linking the five loops. In each loop, an artifact in the form of a standard platinum resistance thermometer (SPRT, 25 ) was circulated among the participating Institut National de Métrologie (BNM-INM/CNAM at the time of the comparison, LNE-INM/CNAM since 1 January 2005), 123 992 Int J Thermophys (2008) 29:991-1000laboratories. To have sufficient information about the possible drift of the SPRTs, the co-pilots performed a calibration over the full temperature range at the beginning and at the end of the loop. A EUROMET reference value (ERV), taking into account the whole comparison, was defined, and the differences (T Lab − T ERV ) were calculated with the associated uncertainties. The method for establishing the link between the participants in CCT-K3 and in EUROMET.T-K3 is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.