Abstract.Authors have investigated the influence of the stabilizer (Boric Acid) concentration during the template-assisted electrochemical deposition of Nickel (Ni) nanowires in Anodic Alumina Oxide (AAO) templates. The synthesis was performed using Ni Sulfate Hexahydrate (NiSO 4 .6H 2 O) as metal salts and Boric Acid (H 3 BO 3 ) as a stabilizer. The mixture of both solutions creates electrolyte and utilized for the electrochemical deposition of Ni nanowires. During the experiment, the boric acid concentration varied between 5 g/L, 37.5 g/L and 60 g/L with a deposition temperature of 80 °C (constant). After the electrochemical deposition process, AAO templates were cleaned with distilled water before dissolution in Sodium Hydroxide (NaOH) solution to obtain the freestanding Ni nanowires. Physical properties of the synthesized Ni nanowires were analyzed using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD). The physical properties of obtained Ni nanowires has eloborated by taking into account the effect of boric acid concentration on the surface morphology, growth length, elemental composition and crystal orientation crystal of the synthesized nickel nanowires. The finding exposes that the boric acid concentration does not influence all aspects in the physicals properties of the synthesized Ni nanowires. The boric acid concentration did not affect the surface texture and crystal orientation. However, shorter Ni nanowires obtained as the concentration of boric acid increased.
Template-assisted electrochemical deposition is a straight forward approach for the synthesis of 1D nanostructures (e.g., nanowire, nanorod, and nanobelt) with controllable morphology. This approach is suitable for mass production as it works at ambient pressure and temperature with the properties of synthesized 1D nanostructures being influenced by synthesis conditions during the electrochemical deposition process. This work aims to investigate the influence of stabilizing agent concentration and heating temperature towards the physical behavior of Nickel (Ni) nanowires synthesized via a template-assisted electrochemical deposition approach. In this research, the electrolyte bath was prepared in three different concentrations of the stabilizing agent (6 g/L, 40 g/L and 70 g/L), and the deposition bath temperature used was 30°C, 70°C, and 110°C respectively. The elemental composition was determined using Energy Dispersive X-ray (EDX) analysis to investigate the percentage of pure Ni element in the synthesized nanowires. The diameter, surface texture, and growth length of the synthesized Ni nanowires were characterized using Field Emission Scanning Electron Microscope (FESEM). X-ray diffractions (XRD) was used for crystal size and crystal orientation analysis. Additionally, the mechanical properties of Ni nanowires were extracted via molecular dynamic simulation. Growth length of Ni nanowires found to be significantly improved as the heating temperature increased, but it decreased when stabilizer agent concentration is high. The diffraction patterns for all synthesis conditions exhibited the synthesis Ni nanowires are polycrystalline as the crystalline planes with Miller indices of 111, 200, and 220. All the investigated nanowires showed ductile failure behavior, a typical behavior at larger length scales of Ni.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.