Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance.
Endogenous hormone secretion proteins along with stress and defense proteins play predominant role in banana embryogenesis. This study reveals the underlying molecular mechanism during transition from vegetative to embryogenic state. Banana (Musa spp.) is well known globally as a food fruit crop for millions. The requirement of quality planting material of banana is enormous. Although mass multiplication through tissue culture is in vogue, high-throughput techniques like somatic embryogenesis (SE) as a mass multiplication tool needs to be improved. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. SE in banana is completely genome-dependent and most of the commercial cultivars exhibit recalcitrance. Thus, understanding the molecular basis of embryogenesis in Musa will help to develop strategies for mass production of quality planting material. In this study, differentially expressed proteins between embryogenic calli (EC) and non-embryogenic calli (NEC) with respect to the explant, immature male flower buds (IMFB), of cv. Grand Naine (AAA) were determined using two-dimensional gel electrophoresis (2DE). The 2DE results were validated through qRT-PCR. In total, 65 proteins were identified: 42 were highly expressed and 23 were less expressed in EC compared to NEC and IMFB. qRT-PCR analysis of five candidate proteins, upregulated in EC, were well correlated with expression at transcript level. Further analysis of proteins showed that embryogenesis in banana is associated with the control of oxidative stress. The regulation of ROS scavenging system and protection of protein structure occurred in the presence of heat shock proteins. Alongside, high accumulation of stress-related cationic peroxidase and plant growth hormone-related proteins like indole-3-pyruvate monooxygenase and adenylate isopentenyltransferase in EC revealed the association with the induction of SE.
In banana, drought responsive gene expression profiles of drought-tolerant and sensitive genotypes remain largely unexplored. In this research, the transcriptome of drought-tolerant banana cultivar (Saba, ABB genome) and sensitive cultivar (Grand Naine, AAA genome) was monitored using mRNA-Seq under control and drought stress condition. A total of 162.36 million reads from tolerant and 126.58 million reads from sensitive libraries were produced and mapped onto the Musa acuminata genome sequence and assembled into 23,096 and 23,079 unigenes. Differential gene expression between two conditions (control and drought) showed that at least 2268 and 2963 statistically significant, functionally known, non-redundant differentially expressed genes (DEGs) from tolerant and sensitive libraries. Drought has up-regulated 991 and 1378 DEGs and down-regulated 1104 and 1585 DEGs respectively in tolerant and sensitive libraries. Among DEGs, 15.9% are coding for transcription factors (TFs) comprising 46 families and 9.5% of DEGs are constituted by protein kinases from 82 families. Most enriched DEGs are mainly involved in protein modifications, lipid metabolism, alkaloid biosynthesis, carbohydrate degradation, glycan metabolism, and biosynthesis of amino acid, cofactor, nucleotide-sugar, hormone, terpenoids and other secondary metabolites. Several, specific genotype-dependent gene expression pattern was observed for drought stress in both cultivars. A subset of 9 DEGs was confirmed using quantitative reverse transcription-PCR. These results will provide necessary information for developing drought-resilient banana plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.