The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.
A uranium-based nuclear fuel and fuel cycle are proposed for energy production. The fuel composition is chosen so that during reactor operation the amount of each transuranic component remains unchanged since the production rate and nuclear reaction rate are balanced. In such a ‘balanced’ fuel only uranium-238 content has a tendency to decrease and, to be kept constant, must be sustained by continuous supply. The major fissionable component of the fuel is plutonium is chosen. This makes it possible to abandon the use of uranium-235, whose reserves are quickly exhausted. The spent nuclear fuel of such a reactor should be reprocessed and used again after separation of fission products and adding depleted uranium. This feature simplifies maintaining the closed nuclear fuel cycle and provides its periodicity. In the fuel balance calculations, nine isotopes of uranium, neptunium, plutonium and americium are used. This number of elements is not complete, but is quite sufficient for calculations which are used for conceptual analysis. For more detailed consideration, this set may be substantially expanded. The variation of the fuel composition depending on the reactor size is not too big. The model accounts for fission, neutron capture and decays. Using MCNPX numerical Monte-Carlo code, the neutron calculations are performed for the reactor of industrial nuclear power plant size with MOX fuel and for a small reactor with metallic fuel. The calculation results indicate that it is possible to achieve criticality of the reactor in both cases and that production and consuming rates are balanced for the transuranic fuel components. In this way, it can be assumed that transuranic elements will constantly return to such a reactor, and only fission products will be sent to storage. This will significantly reduce the radioactivity of spent nuclear fuel. It is important that the storage time for the fission products is much less than for the spent nuclear fuel, just about 300 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.