Bismuth-doped optical fibers and fiber lasers operating in 1625-1775 nm range have been developed for the first time to the best of our knowledge. Now the existing bismuth-doped lasers, including the result presented in this Letter, can cover O, E, S, C, L, and U telecommunication bands. In addition, new data on the nature of the bismuth-related active center were obtained and discussed.
Luminescence emission and excitation spectra of bismuth-doped silica optical fibers free of other dopants have been obtained to construct an emission-excitation map in a wide wavelength range of 400-1600 nm. The main low-lying energy levels of the bismuth active centers in such fibers have been determined. For the first time (to our knowledge), optical gain and lasing have been obtained in such fibers. A gain of 8 dB has been achieved with a pump power of 340 mW, and a cw fiber laser emitting at 1460 nm with an output power of 40 mW and an efficiency of ≈3% has been created.
Bismuth-doped fiber lasers operating in the range 1300-1470 nm have been demonstrated for the first time, to our knowledge. It has been shown that Bi-doped alumina-free phosphogermanosilicate fibers reveal optical gain in a wavelength range of 1240-1485 nm with pumping at 1205, 1230, or 808 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.