Ab s t r a c t. The results of statistical analysis of cross-correlation properties of complex signals' ensembles, were obtained due to time interval permutations are presented in this paper. The essence of the method is to apply the division of short videopulse sequences at the level of intervals with low interaction in the time domain with different numbers of pulses. By applying the cross-correlation analysis, the maximum emission values of the side lobes of the crosscorrelation functions are calculated and its total average value is determined. Based on the obtained values, a series is formed in which the first position is occupied by a time interval in which the value of the maximum emissions of the side lobes of the cross-correlation function has an average value. The determination of the following time intervals is based on the analysis of the rating series and the arrangement of values is carried out in accordance with the selected total average value. Thus, a new average range of the maximum emission values of the side lobes of the crosscorrelation function is formed. The average range increases the number of ensembles with satisfactory cross-correlation properties for use in radio communication systems with code division multiplexing, and minimal interaction between signals in the time domain reduces multiple access interference.
Context. The problem of forming complex signal ensembles on the basis of frequency band filtering and research of their properties is considered. The object of research is the process of synthesis of signal ensembles based on frequency filtering of pseudo-random sequences of short video pulses with low interaction in the time domain.Objective. It is to form complex signal ensembles with satisfactory values of intercorrelation properties, which are close to the signals with minimal energy interaction.Method. The results of the application of forming complex signal ensembles method by frequency filtering of pseudo-random sequences with low interaction in the time domain are presented. As a result of the spectral band selection of the studied pseudorandom short video pulse sequences due to the use of bandpass filters based on the Chebyshev filter of the first kind, new samples of sequences with spectrum restriction are obtained. By applying intercorrelation analysis to the obtained sequence samples, the values of the maximum emissions of the side lobes of the cross-correlation functions (CCF) for all possible signal pairs are estimated. If the values of the maximum emissions of the side lobes of the CCF signals exceed the limit values, the sequence of the analyzed pair with a smaller value of the number of pulses is removed from the ensemble. In case of satisfactory value -the received signals are accepted for the signal ensemble formation with the minimum power interaction. Thus, a new set of values of the maximum emissions of the side lobes of the CCF is formed. This approach increases the number of signals in ensembles with satisfactory values of statistical characteristics with limited signal spectrum width, and the correlation properties of such sequences approach the signals with minimal energy interaction, which reduces the level of multiple access interference. As a result, complex signal ensembles obtained by frequency filtering should be used in cognitive radio systems with code division multiplexing.Results. Based on the software implementation of the method of forming complex signal ensembles by frequency filtering of pseudo-random sequences with low interaction in the time domain, signals with satisfactory values of statistical characteristics with limited signal spectrum width with intercorrelation properties close to signals with minimal energy interaction and higher ensemble volume were selected.Conclusions. The application of frequency filtering to pseudo-random sequences of short video pulses with a low level of crosscorrelation allows to obtain complex signal ensembles, which will be similar in correlation properties to sequences with minimal energy interaction. It will reduce the level of multiple access interference. The analysis revealed that the use of frequency filtering of sequences will slightly worsen the mutual correlation properties of signals, possibly due to suboptimal synthesis of values of maximum emission levels of side lobes of CCF signals, but, nevertheless, it is possible to use ...
Context. The relevance is to study the cross-correlation properties of the developed complex signals ensembles of large volume with a low level of multiple access interference, thereby increasing the efficiency of using a limited radio frequency range. The Object of Research is a method of bandpass filtering with permutations, which allows forming complex signals ensembles of large volume. Objective. The Objective is to determine the optimal cross-correlation properties for the formation of complex signals ensembles of large volume with a low level of multiple access interference. Method. The work has the study results of cross-correlation properties of complex signals ensembles obtained by applying the filtered elements permutation method. The formation of complex signals ensembles is based on pseudo-random sequences with improved cross-correlation properties in the time domain. Bandpass filtering is applied to such sequences, and the number of filter bands is determined based on the calculation of the frequency spectrum utilization coefficient. The filter band optimal width determination is based on a comparison of the maximum emissions of the side lobes values of the of cross-correlation function of signals from the elements number in the involved sequences. The signals obtained by frequency bands allocating are characterized by a difference in form in the minimal similarity condition. In order to reduce the multiple access interference impact, the frequency components transfer obtained by spectral filtering to the common frequency range is carried out. After that, the signals are transferred using the full search method. As a result, it was obtained all possible combinations of signal pairs permutations. The use of permutations in the complex signals ensemble formation can significantly increase the ensemble volume. The signals generated by frequency filtering, to which the transfer to the common frequency band and their subsequent permutation was applied, are subjected to correlation analysis based on the calculation of the maximum emissions values of the side lobes of the cross-correlation function. Comparative characteristic of cross-correlation properties of developed signals with known signals prove that signals generated based on pseudo-random sequences with improved cross-correlation properties have a much larger ensembles volume, are formed on the basis of simple algorithms that don’t require significant computing resources and have satisfactory cross-correlation characteristics. The use of bandpass filtering method with permutation allows the formation of large-volume ensembles whose signals differ inform, and the combination of different frequency bands reduces the vulnerability to multiple access interference. Results. Due to the software implementation of the bandpass filtering method with permutations, the comparison of crosscorrelation properties of nonlinear sequences, M-sequences, multiphase signals and developed signals based on sequences with improved cross-correlation properties was performed. In estimating the levels of maximum emissions of side lobes of the cross-correlation function, it was found that the generated signals obtained by bandpass filtering with permutations deteriorate cross-correlation characteristics by increasing the pulse duration proportional to the decrease in signal frequency band, but their value satisfies the minimal similarity condition, used in cognitive telecommunications systems. Conclusions. The study of the signals cross-correlation properties proves the effectiveness of the developed bandpass filtering with permutations method. The generated signals have cross-correlated characteristics no worse than ensembles based on known signals. At this level of maximum emissions of the side lobes of the cross-correlation function of the developed signals is 7–12% less than the known signals. Thus, the method of bandpass filtering with permutations can be used to increase the efficiency of radio frequency resource use of both existing and advanced cognitive telecommunication networks of wireless access based on systems with code division multiplexing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.