Впåðвыå пðèвåдåíы ñвåдåíèя î íàхîдкå в дàйкå дîëîìèò-кàëьöèòîвîãî кàðбîíàòèòà в Свåòëèíñкîì зîëîòîðóдíîì ìåñòîðîждåíèè íà Южíîì Óðàëå ðåдкèх ñóëьфèдîв Ni, Zn, Сu, Cr è V: вàэñèòà, кàëèíèíèòà, ñóëьвàíèòà è пàòðîíèòà. Оíè èìåюò пîвåðхíîñòè îдíîвðåìåííîãî ðîñòà дðóã ñ дðóãîì è ñ îкðóжàющèìè кðèñòàëëàìè дîëîìèòà è кàëьöèòà. Чðåзвы÷àйíî ìåëкèå ðàзìåðы кðèñòàëëîв (ìåíåå 30 ìкì) íå дàюò вîзìîжíîñòè èзó÷èòь фèзè÷åñкèå ñвîйñòвà ìèíåðàëîв, дàòь èх ðåíòãåíîвñкóю хàðàкòåðèñòèкó. Дàííыå î хèìè÷åñкîì ñîñòàвå ñóëьфèдîв пîëó÷åíы íà СЭМ ÐЕММÀ-202 М. Сóëьфèды (в òîì ÷èñëå пèðèò) вñòðå÷åíы в вèдå î÷åíь ìåëкîй ðàññåяííîй вкðàпëåííîñòè в òёìíых пîëîñàх кàðбîíàòèòîв, îбîãàщåííых кðèñòàëëàìè фòîðфëîãîпèòà, ñàìîðîдíîй ñåðîй è ñåðîвîдîðîдîì, ëîкàëèзîвàííых в ìèкðîпîðèñòых ó÷àñòкàх кðèñòàëëîв кàëьöèòà. Пîд÷åðкíóòà пðèóðî÷åííîñòь òàкèх ñóëьфèдîв вî вñåх èх пðîявëåíèях пðåèìóщåñòвåííî к кàðбîíàòíыì пîðîдàì. Пîвñåìåñòíàя îбîãàщåííîñòь ìèíåðàëîв-пðèìåñåй в òàкèх кàðбîíàòèòàх фòîðîì, хðîìîì, вàíàдèåì è íèкåëåì ìîжåò ñвèдåòåëьñòвîвàòь îб ó÷àñòèè в èх фîðìèðîвàíèè фëюèдîв óëьòðàîñíîвíîй-щåëî÷íîй ìàãìы. Эòîìó ñпîñîбñòвîвàëî íàëè÷èå в íèх óãëåкèñëîòы è ñåðîвîдîðîдà.
A rare earth element (REE)-, Cr- and Mg-bearing variety of the vanadium epidote-group mineral mukhinite occurs in a calcite–dolomite carbonatite dyke cutting metamorphosed volcano-sedimentary rocks exposed in the walls of the quarry of the Svetlinsky gold deposit, South Urals. This mineral was found in a paragene assemblage including native sulphur, phlogopite and fluorophlogopite, together with accessory pyrite, other sulfides and sulfosalts, gold, Cr- and V-bearing muscovite, margarite, Cr- and V-bearing dravite, fluoro-tremolite, actinolite, fluoro-pargasite, anhydrite, apatite, uranium hydroxides, V-rich titanite, V- and Nb-rich rutile, spinel and corundum. The contents of ΣREE2O3 and V2O3 in mukhinite vary in the ranges of 4.01–9.69 and 5.34–7.46 wt.%, respectively. A Raman spectrum of REE-rich mukhinite is provided. The main schemes of isomorphic substitutions in mukhinite are ΣREE + Mg ↔ Ca + Al and V+Cr ↔ Al. The crystal structure of REE-rich mukhinite has been studied by single-crystal X-ray diffraction analysis. The mineral is monoclinic, with the space group P21/m, and unit-cell parameters are: a = 8.8972(11) Å, b = 5.6221(6) Å, c = 10.1519(12) Å, β = 115.169° and V = 459.60(11) Å3. The crystal structure of REE-rich mukhinite is similar to that of its synthetic analogue; the refined crystal-chemical formula of the sample studied is (Z = 2): { A 1Ca A 2(Ca0.8REE0.2)}{ M 1(Al0.95Cr0.05) M 2Al M 3[(V,Cr)3+0.40Al0.35Mg0.25]}(Si2O7)(SiO4)O(OH).
Research subject. Rare minerals of tin and antimony – stistaites from natural lead plates from the Severo-Svetlinskaya placer in the Chelyabinsk region and from microspherules of intermetallic compounds in the products of erosion of granites of the Kisegach complex in the Ilmeny Mountains.Materials and methods. Electron probe analysis and laser ablation with inductively coupled plasma were used to study the composition of the predominant minerals of intermetallic compounds in lead plates extracted during the washing of a gold-bearing placer, as well as from metal microspherules in the sandy fraction of eroded granites.Results. Two types of stistaite were identified: lead and arsenic-lead. Lead stistaites is sharply predominant, with its average composition (wt %) being Sb – 47.39, Sn – 38.75, Pb – 13.24, Cu – 0.06. The average composition of arsenic-lead stystaite (wt %) was found to be Sb – 43.89, Sn – 41.06, Pb – 11.02, As – 3.05, Cu – 0.47. Tin-lead microspherules from the destruction products of biotite granites of the Kisegach massif (Ilmeny Mountains) occasionally contain crystals and spotted precipitates of lead stistaite with the composition (wt %) of Sn 53.54, Sb 38.45, and Pb 7.42.Conclusions. It is assumed that, in both cases, the formation of alloys of intermetallic compounds of tin, lead and antimony with inclusions of native copper and iron was associated with granite magmatism.
Ïðèâåäåíû ïåðâûå äàííûå î ñîñòàâå è ôèçè÷åñêèõ ñâîéñòâàõ ìàãíåçèîôåððèòà èç êàðáîíàòèòîâ Øèøèìñêîé êîïè íà Þaeíîì Óðàëå. Õèìè÷åñêèé ñîñòàâ è îñîáåííîñòè ðàñïðåäåëåíèÿ â ìàãíåçèîôåððèòå ìèíåðàëüíûõ ïðèìåñåé áûëè èññëåäîâàíû ñ ïîìîùüþ ìèêðîàíàëèçàòîðà è ðàìàíîâñêîé ñïåêòðîñêîïèè, äèàãíîñòèêà ïîäòâåðaeäåíà äèôðàêòîãðàììîé. Ìèíåðàë îáíàðóaeåí â ýëþâèàëüíîé äðåñâå íà âûõîäå îäíîé èç äàåê êàðáîíàòèòîâ, ñåêóùåé ïîðîäû ýêçîêîíòàêòîâîé çîíû ãàááðî.Ìàãíåçèîôåððèò îòëè÷àåòñÿ îò ìàãíåòèòà ïðèñóòñòâèåì çíà÷èòåëüíûõ êîëè÷åñòâ MgO (äî 14.1 ìàñ.%) è MnO (äî 7.6 ìàñ.%). Èì ñëîaeåíû ñèëüíîìàãíèòíûå îêòàýäðè÷åñêèå êðèñòàëëû ðàçìåðîì 0.3-3.0 ìì è î÷åíü ìåëêèå âêëþ÷åíèÿ â øïèíåëè è ïåðîâñêèòå. Ñàì ìàãíåçèîôåððèò ñîäåðaeèò ìèêðîâêëþ÷åíèÿ ïåðîâñêèòà, ãåìàòèòà, øïèíåëè, õëîðèòà è êàëüöèòà. Ìîðôîëîãè÷åñêèå îñîáåííîñòè êðèñòàëëîâ, îòñóòñòâèå â ìàãíåçèîôåððèòå «òåíåé» âîçìîaeíûõ ïðîòîìèíåðàëîâ, íàëè÷èå ìåëêèõ âðîñòêîâ ìàãíåçèîôåððèòà â çåðíàõ ïåðîâñêèòà è øïèíåëè, êîìïðîìèññíûå ãðàíèöû êðèñòàëëîâ ìàãíåçèîôåððèòà è êàëüöèòà -âñ¸ ýòî ÿâëÿåòñÿ äîêàçàòåëüñòâîì îäíîâðåìåííîãî îáðàçîâàíèÿ ýòèõ ìèíåðàëîâ, áåç ñëåäîâ çàìåùåíèÿ èõ äðóã äðóãîì. Ïðåèìóùåñòâåííî êàëüöèòîâûé ñîñòàâ ïîðîäû, åå çàëåãàíèå â ôîðìå äàåê è aeèë â ðàçíîîáðàçíîì ñóáñòðàòå ïîçâîëÿþò ïîëàãàòü, ÷òî ñëàãàþùèå åå ìèíåðàëû îáðàçîâàëèñü ïðè êðèñòàëëèçàöèè êàðáîíàòíîãî ðàñïëàâà.Êëþ÷åâûå ñëîâà: êàðáîíàòèòû, ìàãíåçèîôåððèò, Øèøèìñêàÿ êîïü, Þaeíûé Óðàë.The first data on the composition and physical properties of magnesioferrite from carbonatites of the Shishimskaya pit in the South Urals are presented. The chemical composition and features of the distribution of mineral inclusions in it were investigated using a microanalyzer and Raman spectroscopy, its diagnosis was confirmed by a diffractogram. The mineral was found in the eluvial grus at the outcrop of one of the carbonatite dikes, a cutting rock of the exocontact gabbro zone.Magnesioferrite differs from magnetite in the presence of significant amounts of MgO (up to 14.1 wt. %) and MnO (up to 7.6 wt. %). It composes highly magnetic octahedral crystals 0.3-3.0 mm in size and very small inclusions in spinels and perovskite. Magnesioferrite contains microinclusions of perovskite, hematite, spinel, chlorite, and calcite. For diagnostic purposes, the Raman spectra of magnesioferrite are the most informative. The ideal form of its crystals is similar to metacrystals. The morphological features of the crystals, the absence of possible «shadows» of protominerals in the magnesioferrite, the compromise boundaries of the crystals of magnesioferrite and calcite are all evidence of the simultaneous formation of these minerals, without traces of replacing them with each other. The predominantly calcite composition of the rock, its occurrence in the form of dikes and veins in a diverse substrate, suggest that its minerals were formed during the crystallization of the carbonate melt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.