In this paper, Cyclic Elliptic Curves of the form with order M is considered. A finite field GF(p) (p ≥ N, where N is the order of point P) is considered. Random sequence {k i } of integers is generated using Linear Feedback Shift Register (LFSR) over GF(p) for maximum period. Every element in sequence {k i } is mapped to k i P which is a point on Cyclic Elliptic Curve with co-ordinates say (x i , y i ). The sequence {k i P} is a random sequence of elliptic curve points. From the sequence (x i , y i ) several binary and non-binary sequences are derived and their randomness properties are investigated. The results are discussed. It is found that these sequences pass FIPS-140, NIST tests and exhibit good Hamming Correlation properties. These sequences find applications in Stream Cipher Systems. Here, Cyclic Elliptic Curve over GF(2 8 ) is chosen for analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.