BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast 2-hybrid assays. Here we focus on the transcription factor Sry-δ. Interactions were confirmed in pulldown experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-δ interacted with promoterproximal BEAF both when bound to DNA adjacent to BEAF or over 2 kb upstream to activate a reporter gene in transient transfection experiments. The interaction between BEAF and Sry-δ was detected using both a minimal developmental promoter (y) and a housekeeping promoter (RpS12), while BEAF alone strongly activated the housekeeping promoter. These two functions for BEAF implicate it in playing a direct role in gene regulation at hundreds of BEAF-associated promoters.
Data implicate the Drosophila 32 kDa Boundary Element-Associated Factors BEAF-32A and BEAF-32B in both chromatin domain insulator element function and promoter function. They might also function as an epigenetic memory by remaining bound to mitotic chromosomes. Both proteins are made from the same gene. They differ in their N-terminal 80 amino acids, which contain single DNA-binding BED fingers. The remaining 200 amino acids are identical in the two proteins. The structure and function of the middle region of 120 amino acids is unknown, while the C-terminal region of 80 amino acids has a putative leucine zipper and a BESS domain and mediates BEAF-BEAF interactions. Here we report a further characterization of BEAF. We show that the BESS domain alone is sufficient to mediate BEAF-BEAF interactions, although the presence of the putative leucine zipper on at least one protein strengthens the interactions. BEAF-32B is sufficient to rescue a null BEAF mutation in flies. Using mutant BEAF-32B rescue transgenes, we show that the middle region and the BESS domain are essential. In contrast, the last 40 amino acids of the middle region, which is poorly conserved among Drosophila species, is dispensable. Deleting the putative leucine zipper results in a hypomorphic mutant BEAF-32B protein. Finally, we document the dynamics of BEAF-32A-EGFP and BEAF-32B-mRFP during mitosis in embryos. A subpopulation of both proteins appears to remain on mitotic chromosomes and also on the mitotic spindle, while much of the fluorescence is dispersed during mitosis. Differences in the dynamics of the two proteins are observed in syncytial embryos, and both proteins show differences between syncytial and later embryos. This characterization of BEAF lays a foundation for future studies into molecular mechanisms of BEAF function.
The Drosophila Boundary Element-Associated Factor of 32 kDa (BEAF) binds in promoter regions of a few thousand mostly housekeeping genes. BEAF is implicated in both chromatin domain boundary activity and promoter function, although molecular mechanisms remain elusive. Here we show that BEAF physically interacts with the polybromo (Pbro) subunit of PBAP, a SWI/SNF-class chromatin remodeling complex. BEAF also shows genetic interactions with Pbro and other PBAP subunits. We examine the effect of this interaction on gene expression and chromatin structure using precision run-on sequencing (PRO-seq) and micrococcal nuclease sequencing (MNase-seq) after RNAi-mediated knockdown in cultured S2 cells. Our results are consistent with the interaction playing a subtle role in gene activation. Fewer than 5% of BEAF-associated genes were significantly affected after BEAF knockdown. Most were down-regulated, accompanied by fill-in of the promoter nucleosome depleted region (NDR) and a slight upstream shift of the +1 nucleosome. Pbro knockdown caused down-regulation of several hundred genes, and showed a correlation with BEAF knockdown but a better correlation with promoter-proximal GAGA factor binding. MNase-seq supports that BEAF binds near housekeeping gene promoters while Pbro is more important at regulated genes. Yet there is a similar general but slight reduction of promoter-proximal pausing by RNA polymerase II and increase in NDR nucleosome occupancy after knockdown of either protein. We discuss the possibility of redundant factors keeping BEAF-associated promoters active and masking the role of interactions between BEAF and the Pbro subunit of PBAP in S2 cells. We identify FACT and NURF as candidate redundant factors.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.