AimsAnalysis of molecular markers in addition to cytological analysis of fine-needle aspiration (FNA) samples is a promising way to improve the preoperative diagnosis of thyroid nodules. Previously, we have developed an algorithm for the differential diagnosis of thyroid nodules by means of a small set of molecular markers. Here, we aimed to validate this approach using FNA cytology samples of Bethesda categories III and IV, in which preoperative detection of malignancy by cytological analysis is impossible.MethodsA total of 122 FNA smears from patients with indeterminate cytology (Bethesda III: 13 patients, Bethesda IV: 109 patients) were analysed by real-time PCR regarding the preselected set of molecular markers (the BRAF V600E mutation, normalised concentrations of HMGA2 mRNA, 3 microRNAs, and the mitochondrial/nuclear DNA ratio). The decision tree–based classifier was used to discriminate between benign and malignant tumours.ResultsThe molecular testing detected malignancy in FNA smears of indeterminate cytology with 89.2% sensitivity, 84.6% positive predictive value, 92.9% specificity and 95.2% negative predictive value; these characteristics are comparable with those of more complicated commercial tests. Residual risk of malignancy for the thyroid nodules that were shown to be benign by this molecular method did not exceed the reported risk of malignancy for Bethesda II histological diagnosis. Analytical-accuracy assessment revealed required nucleic-acid input of ≥5 ng.ConclusionsThe study shows feasibility of preoperative differential diagnosis of thyroid nodules of indeterminate cytology using a small panel of molecular markers of different types by a simple PCR-based method using stained FNA smears.
The preoperative diagnostics of medullary thyroid carcinoma (MTC), including the measuring of the blood calcitonin level, has a number of limitations. Particular focus has recently been placed on the role of miRNAs in the development of various malignant tumors; a comparative analysis of accuracy of the existing methods for MTC diagnosis with a novel diagnosis method, evaluation of the miRNA-375 expression level, was performed in this study. The expression level of miRNA-375 in cytology samples from 555 patients with the known histological diagnosis, including 41 patients with confirmed postoperative diagnosis of MTC, was assessed. The diagnostic parameters of the basal calcitonin level, calcitonin in wash-out fluid from the FNAB needle, and miRNA-375 were compared. An assessment of the miRNA-375 expression level made it possible to detect all the MTC samples with a 100% accuracy among all the 555 cytology specimens, as well as in non-informative FNAB specimens, and specimens from the ipsilateral thyroid lobe. Parameters such as sensitivity, specificity, PPV, and NPV were 100%. The miRNA-375 level, unlike calcitonin, does not correlate with tumor volume, so it does not have the so-called “gray zone”. An assessment of the miRNA-375 expression allows one to accurately distinguish MTC from other malignant and benign thyroid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.