[1] During an intense field campaign for generating a spatial composite of aerosol characteristics over peninsular India, collocated measurements of the mass concentration and size distribution of near-surface aerosols were made onboard instrumented vehicles along the road network during the dry, winter season (February-March) of 2004. The study regions covered coastal, industrial, urban, village, remote, semiarid, and vegetated forestlands. The results showed (1) comparatively high aerosol (mass) concentrations (exceeding 50 mg m À3 ), in general, along the coastal regions (east and west) and adjacent to urban locations, and (2) reduced mass concentration (<30 mg m
À3) over the semiarid interior continental regions. Fine, accumulation-mode particles (<1 mm) contribute more than 50% to the total aerosol mass concentration in the coastal regions, which is more conspicuous along the east coast than the west coast, while the interior regions showed abundance (>50% of the total) of coarse-mode aerosols (>1 mm). The spatial composite of accumulation-mode share to the total aerosol mass concentration agreed very well with the monthly mean spatial composite of aerosol fine-mode fraction for February 2004, deduced from Moderate-Resolution Imaging Spectroradiometer data for the study region, while a point by point comparison yielded a linear association with a slope of 1.09 and correlation coefficient of 0.79 for 76 independent data pairs. Pockets of enhanced aerosol concentration were observed around the industrialized and urban centers along the coast as well as inland. Aerosol size distributions were parameterized using a power law. Spatial variation of the retrieved aerosol size index shows relatively high values (>4) along the coast compared to interior continental regions except at a few locations. Urban locations showed steeper size spectra than the remote locations.Citation: Moorthy, K. K., et al. (2005), Wintertime spatial characteristics of boundary layer aerosols over peninsular India,
[1] Altitude profiles of aerosol black carbon (BC) in the atmospheric boundary layer and above it were measured for the first time in India, over the urban location Hyderabad, onboard an aircraft during two consecutive days of February 2004. The profiles on both the days were consistent, and showed a rapid decrease in BC concentration within the boundary up to $550 m AGL (where convective activity prevailed). Sodar measurements from the nearby location revealed the mean boundary layer height to be $600 m during the flight period. The decrease in BC above the boundary layer was quite weak up to $2.2 km AGL.
[1] The temperature dependencies of cirrus properties are studied using a dual polarization lidar and Mesosphere Stratosphere Troposphere (MST) radar at the tropical station Gadanki (13.5°N, 79.2°E). Cirrus clouds are generally observed in the altitude region 10 to 18 km, with midcloud temperature in the range À85°to À40°C. The cloud temperature decreases with increase in cloud altitude as expected. The mean cloud thickness is generally in the range 0.7 to 1.7 km. For temperatures in the range À75°to À50°C the cloud thickness is $1.7 km and shows a tendency to decrease at lower temperatures. The linear depolarization ratio (LDR) within the cloud shows a small increase with decrease in temperature. The cloud extinction and optical depth increases with increase in temperature. The temperature dependence of cirrus extinction/optical depth has been parameterized using different analytical forms such as exponential, linear, and polynomial, which shows that a second-order polynomial function is well suited for describing the temperature dependence of extinction coefficient/optical depth of tropical cirrus. The climate sensitivity factor derived based on the empirical relations shows an increase with decrease in cloud optical depth. The present study, however, indicates that the cirrus becomes radiatively significant when its optical depth exceeds a threshold value of 0.03.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.