Historically viewed as a niche economic sector, gaming is now projected to exceed a global annual revenue of $218.7 billion in 2024, taking advantage of recent Artificial Intelligence (AI) advances. In recent years, specific AI techniques namely; Machine Learning (ML) and Reinforcement Learning (RL), have seen impressive progress and popularity. Techniques developed within these two fields are now able to analyze and learn from gameplay experiences enabling more interactive, immersive, and engaging games. While the number of ML and RL algorithms is growing, their implementations through frameworks and toolkits are also extensive too. Moreover, the game design and development community lacks a framework for informed evaluation of available RL toolkits. In this paper, we present a comprehensive survey of RL toolkits for games using a qualitative evaluation methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.