Gross cytogenetic anomalies are traditionally being used as diagnostic, prognostic and therapeutic markers in the clinical management of cancer, including childhood acute lymphoblastic leukemia (ALL). Recently, it has become increasingly clear that genetic lesions driving tumorigenesis frequently occur at the submicroscopic level and, consequently, escape standard cytogenetic observations. Therefore, we profiled the genomes of 40 childhood ALLs at high resolution. We detected multiple de novo genetic lesions, including gross aneuploidies and segmental gains and losses, some of which were subtle and affected single genes. Many of these lesions involved recurrent (partially) overlapping deletions and duplications, containing various established leukemia-associated genes, such as ETV6, RUNX1 and MLL. Importantly, the most frequently affected genes were those controlling G1/S cell cycle progression (e.g. CDKN2A, CDKN1B and RB1), followed by genes associated with B-cell development. The latter group includes microdeletions of the B-lineage transcription factors PAX5, EBF, E2-2 and IKZF1 (Ikaros), as well as genes with other established roles in B-cell development, that is RAG1 and RAG2, FYN, PBEF1 or CBP/PAG. The fact that we frequently encountered multiple lesions affecting genes involved in cell cycle regulation and Bcell differentiation strongly suggests that both these processes need to be targeted independently and simultaneously to trigger ALL development.
Relapse is the most common cause of treatment failure in pediatric acute lymphoblastic leukemia (ALL) and is often difficult to predict. To explore the prognostic impact of recurrent DNA copy number abnormalities on relapse, we performed high-resolution genomic profiling of 34 paired diagnosis and relapse ALL samples. Recurrent lesions detected at diagnosis, including PAX5, CDKN2A and EBF1, were frequently absent at relapse, indicating that they represent secondary events that may be absent in the relapse-prone therapy-resistant progenitor cell. In contrast, deletions and nonsense mutations in IKZF1 (IKAROS) were highly enriched and consistently preserved at the time of relapse. A targeted copy number screen in an unselected cohort of 131 precursor B-ALL cases, enrolled in the dexamethasone-based Dutch Childhood Oncology Group treatment protocol ALL9, revealed that IKZF1 deletions are significantly associated with poor relapse-free and overall survival rates. Separate analysis of ALL9-treatment subgroups revealed that non-high-risk (NHR) patients with IKZF1 deletions exhibited a B12-fold higher relative relapse rate than those without IKZF1 deletions. Consequently, IKZF1 deletion status allowed the prospective identification of 53% of the relapse-prone NHR-classified patients within this subgroup and, therefore, serves as one of the strongest predictors of relapse at the time of diagnosis with high potential for future risk stratification.
Autologous skin grafts are the gold standard for the treatment of burn wounds. In a number of cases, treatment with autologous tissue is not possible and skin substitutes are used. The outcome, however, is not optimal and improvements are needed. Inspired by scarless healing in early embryonic development, we here set out a strategy for the design and construction of embryonic-like scaffolds for skin tissue engineering. This strategy may serve as a general approach in the construction of embryonic-like scaffolds for other tissues/organ. As a first step, key effector molecules upregulated during embryonic and neonatal skin formation were identified using a comparative gene expressing analysis. A set of 20 effector molecules was identified, from which insulin-like growth factor 2 (IGF2) and sonic hedgehog (SHH) were selected for incorporation into a type I collagen-heparin scaffold. Porous scaffolds were constructed using purified collagen fibrils and 6% covalently bound heparin (to bind and protect the growth factors), and IGF2 and SHH were incorporated either individually (~0.7 and 0.4 µg/mg scaffolds) or in combination (combined ~1.5 µg/mg scaffolds). In addition, scaffolds containing hyaluronan (up to 20 µg/mg scaffold) were prepared, based on the up- or downregulation of genes involved in hyaluronan synthesis/degradation and its suggested role in scarless healing. In conclusion, based on a comprehensive gene expression analysis, a set of effector molecules and matrix molecules was identified and incorporated into porous scaffolds. The scaffolds thus prepared may create an 'embryonic-like' environment for cells to recapitulate embryonic events and for new tissues/organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.