Metal-enhanced fluorescence of molecular probes in plasmonic nanostructures offers highly sensitive chemical and biomedical analyses, but a comprehensive theory of the phenomenon is far from being complete. In this study, a systematic theoretical analysis is provided for overall luminescence enhancement/quenching for fluorophores near silver spherical nanoparticles. The approach accounts for local intensity enhancement, radiative and nonradiative rates modification, light polarization, molecule position, and its dipole moment orientation. Numerical modeling has been performed for fluorescein-based labels (e.g., Alexa Fluor 488) widely used in biomedical studies and development. The maximal enhancement exceeding 50 times is predicted for nanoparticle diameter 50 nm, the optimal excitation wavelength being 370 nm. For long-wave excitation, bigger particles are more efficient. The experiments with a fluorescein isothiocyanate conjugate of bovine serum albumin confirmed theoretical predictions. The results provide an extensive and promising estimate for simple and affordable silver-based nanostructures to be used in fluorescent plasmonic sensors.
Pronounced 10(4)-fold enhancement of Raman scattering has been obtained for ZnO nanocrystals on substrates coated with 50 nm Ag nanoparticles under nonresonant excitation with a commercial red-emitting laser. This makes feasible beyond 10(-18) mole detection of ZnO nanocrystals with a commercial setup using a 0.1 mW continuous wave laser and can be purposefully used in analytical applications where conjugated nanocrystals serve as Raman markers. For Au-coated surfaces the enhancement is much lower and the heating effects in the course of Raman experiments are pronounced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.