SummaryPost-transcriptional silencing of plant genes using anti-sense or co-suppression constructs usually results in only a modest proportion of silenced individuals. Recent work has demonstrated the potential for constructs encoding self-complementary`hairpin' RNA (hpRNA) to ef®ciently silence genes. In this study we examine design rules for ef®cient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing, and the degree of silencing. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 to 853 nt gave ef®cient silencing in a wide range of plant species, and inclusion of an intron in these constructs had a consistently enhancing effect. Introncontaining constructs (ihpRNA) generally gave 90±100% of independent transgenic plants showing silencing. The degree of silencing with these constructs was much greater than that obtained using either co-suppression or anti-sense constructs. We have made a generic vector, pHANNIBAL, that allows a simple, single PCR product from a gene of interest to be easily converted into a highly effective ihpRNA silencing construct. We have also created a high-throughput vector, pHELLSGATE, that should facilitate the cloning of gene libraries or large numbers of de®ned genes, such as those in EST collections, using an in vitro recombinase system. This system may facilitate the large-scale determination and discovery of plant gene functions in the same way as RNAi is being used to examine gene function in Caenorhabditis elegans.
Tobacco plants over-expressing L-phenylalanine ammonia-lyase (PAL(+)) produce high levels of chlorogenic acid (CGA) and exhibit markedly reduced susceptibility to infection with the fungal pathogen Cercospora nicotianae, although their resistance to tobacco mosaic virus (TMV) is unchanged. Levels of the signal molecule salicylic acid (SA) were similar in uninfected PAL(+) and control plants and also following TMV infection. In crosses of PAL(+) tobacco with tobacco harboring the bacterial NahG salicylate hydroxylase gene, progeny harboring both transgenes lost resistance to TMV, indicating that SA is critical for resistance to TMV and that increased production of phenylpropanoid compounds such as CGA cannot substitute for the reduction in SA levels. In contrast, PAL(+)/NahG plants showed strongly reduced susceptibility to Cercospora nicotianae compared to the NahG parent line. These results are consistent with a recent report questioning the role of PAL in SA biosynthesis in Arabidopsis, and highlight the importance of phenylpropanoid compounds such as CGA in plant disease resistance.
Pre-inoculation of plants with a pathogen that induces necrosis leads to the development of systemic acquired resistance (SAR) to subsequent pathogen attack [1]. The phenylpropanoid-derived compound salicylic acid (SA) is necessary for the full expression of both local resistance and SAR [2] [3]. A separate signaling pathway involving jasmonic acid (JA) is involved in systemic responses to wounding and insect herbivory [4] [5]. There is evidence both supporting and opposing the idea of cross-protection against microbial pathogens and insect herbivores [6] [7]. This is a controversial area because pharmacological experiments point to negative cross-talk between responses to systemic pathogens and responses to wounding [8] [9] [10], although this has not been demonstrated functionally in vivo. Here, we report that reducing phenylpropanoid biosynthesis by silencing the expression of phenylalanine ammonialyase (PAL) reduces SAR to tobacco mosaic virus (TMV), whereas overexpression of PAL enhances SAR. Tobacco plants with reduced SAR exhibited more effective grazing-induced systemic resistance to larvae of Heliothis virescens, but larval resistance was reduced in plants with elevated phenylpropanoid levels. Furthermore, genetic modification of components involved in phenylpropanoid synthesis revealed an inverse relationship between SA and JA levels. These results demonstrate phenylpropanoid-mediated cross-talk in vivo between microbially induced and herbivore-induced pathways of systemic resistance.
A major challenge in the post-genome era of plant biology is to determine the functions of all genes in the plant genome. A straightforward approach to this problem is to reduce or knockout expression of a gene with the hope of seeing a phenotype that is suggestive of its function. Insertional mutagenesis is a useful tool for this type of study but is limited by gene redundancy, lethal knockouts, non-tagged mutants, and the inability to target the inserted element to a specific gene. The efficacy of gene silencing in plants using inverted-repeat transgene constructs that encode a hairpin RNA (hpRNA) has been demonstrated by a number of groups, and has several advantages over insertional mutagenesis. In this paper we describe two improved pHellsgate vectors that facilitate rapid generation of hpRNA-encoding constructs. pHellsgate 4 allows the production of an hpRNA construct in a single step from a single polymerase chain reaction product, while pHellsgate 8 requires a two-step process via an intermediate vector. We show that these vectors are effective at silencing three endogenous genes in Arabidopsis, FLOWERING LOCUS C, PHYTOENE DESATURASE and ETHYLENE INSENSITIVE 2. We also show that a construct of sequences from two genes silences both genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.