A distributed resistance analogy for solid oxide fuel cells Beale, Steven; Zhubrin, S. V.Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en Numerical Heat Transfer, Part B: Fundamenals, 47, 6, 2005 Publisher's version / la version de l'éditeur: This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. The method of distributed resistances is outlined for performance calculations in solid oxide fuel cells. The domain is discretized using a multiply shared space method. Both potentiostatic and galvanostatic conditions are considered. Mass transfer effects on the heat transfer coefficients and the Nernst potential are taken into consideration. Calculations, for one cell and for a 10-cell stack, are compared to those obtained using a detailed numerical method. Agreement is very good. It is concluded that the distributed resistance analogy may be used to predict transport phenomena in fuel cell stacks at a fraction of the computational cost required for conventional means.
Abstract. Advanced computational fluid dynamics (CFD) models of gas release and dispersion (GRAD) have been developed, tested, validated and applied to the modeling of various industrial real-life indoor and outdoor flammable gas (hydrogen, methane, etc.) release scenarios with complex geometries. The user-friendly GRAD CFD modeling tool has been designed as a customized module based on the commercial general-purpose CFD software, PHOENICS. Advanced CFD models available include the following: the dynamic boundary conditions, describing the transient gas release from a pressurized vessel, the calibrated outlet boundary conditions, the advanced turbulence models, the real gas law properties applied at high-pressure releases, the special output features and the adaptive grid refinement tools. One of the advanced turbulent models is the multifluid model (MFM) of turbulence, which enables to predict the stochastic properties of flammable gas clouds. The predictions of transient threedimensional (3D) distributions of flammable gas concentrations have been validated using the comparisons with available experimental data. The validation matrix contains the enclosed and nonenclosed geometries, the subsonic and sonic release flow rates and the releases of various gases, e.g., hydrogen, helium, etc. GRAD CFD software is recommended for safety and environmental protection analyses. For example, it was applied to the hydrogen safety assessments particular, the dynamic behaviors of flammable gas clouds (with the gas ______ * To whom correspondence should be addressed. Vladimir Agranat, 6591 Spinnaker Circle, Mississauga, Ontario, L5W 1R2, Canada. e-mail: info@tchouvelev.org and acfda@sympatico.ca concentrations between the lower flammability level (LFL) and the upper flammability level (UFL)) can be accurately predicted with the GRAD CFD modeling tool. Some examples of hydrogen cloud predictions are presented in the paper. CFD modeling of flammable gas clouds could be considered as a costeffective and reliable tool for environmental assessments and design optimizations of combustion devices. The paper details the model features and provides currently available testing, validation and application cases relevant to the predictions of flammable gas dispersion scenarios. The significance of the results is discussed together with further steps required to extend and improve the models.Keywords: computational fluid dynamics, numerical modeling tool, flammable gas cloud, gas release and dispersion, environmental protection and safety analyses, clearance distance In many industries, there are serious safety concerns related to the use of flammable gases in indoor and outdoor environments. It is very important to develop reliable methods of analyses of flammable gas release and dispersion (GRAD) in real-life complex geometry cases. Computational fluid dynamics (CFD) is considered as one of the promising cost-effective approaches in such analyses. The objective of this paper is to describe the advanced GRAD CFD models, which have been r...
A high-pressure water electrolysis system has been investigated numerically and experimentally. The advanced CFD model of two-phase flow, which calculated the 3D distributions of pressure, gas and liquid velocities and gas and liquid volume fractions, has been developed to account for all the major components in the system, and appropriate constitutive equations for two-phase flow parameters were selected for various parts of the system, such as the cell stack, riser, separator and downcomer. Heat transfer between the two phases, and between the gas-liquid mixture and cooling coils located in the gas-liquid separator was also accounted for. The model was validated using comparisons of predicted liquid flow rate with the liquid flow rate measured in the downcomer, where a single-phase liquid flow existed. The effects of pressure, current density, number of cells, and bubble size were investigated with the numerical model. The numerical predictions matched the general trends obtained from the experimental results with regard to the effects of pressure and current density on the liquid flow rate. The validated CFD model is being used as a cell design tool at Hydrogenics Corporation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.