Previous studies have shown that ultraviolet B (UVB) radiation causes platelet aggregation by exposing fibrinogen binding sites via activation of an intracellular mechanism. In the present study we have further investigated the routes of platelet activation following UVB exposure. Evidence is provided that UVB radiation does not activate the platelets via the classical Phospholipase A2 and Phospholipase C routes. Despite this observation, UVB-induced fibrinogen binding was found to be correlated with a 40% increase in phosphorylated 47 kD protein. Both findings could be completely inhibited in the presence of staurosporine, a potent inhibitor of protein kinase C (PK-C). In efforts to explain the mechanism of PK-C activation by UV radiation we found that both UV-induced PK-C activation and platelet aggregation were significantly reduced in the presence of specific scavengers for reactive oxygen species including superoxide dismutase and catalase. We conclude that exposure of platelets to UVB radiation can activate PK-C via oxygen radicals, resulting in exposure of fibrinogen binding sites and subsequent platelet aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.