The biological properties of deglycosylated human chorionic gonadotropin (DhCG), obtained by hydrogen fluoride treatment (HF-DhCG) of intact hCG or by oligonucleotide-directed mutagenesis (CHO-DhCG), and that of their fully glycosylated counterparts, were tested in terms of cAMP and steroid production in rat Leydig cells and in mouse Leydig tumor cells (MA-10 cells). In both cell types, HF-DhCG and CHO-DhCG possessed comparable biological activities. The maximum for DhCG-induced cAMP production was approximately 12% of that of intact hCG when tested in rat Leydig cells, and only 2% when tested in MA-10 cells. DhCG possessed significant steroidogenic activity in both cell types. In MA-10 cells the maximum for DhCG-induced steroidogenesis was 30-50% of that of intact hCG, while in rat Leydig cells DhCG and hCG induced similar steroidogenic maxima. Based on its ED50, DhCG possessed 10-17% of the steroidogenic potency of intact hCG in rat Leydig cells, while in MA-10 cells DhCG was only 2-fold less potent than hCG. When accurate hormone-receptor binding data are absent, the intrinsic receptor-stimulating activity of a ligand can still be estimated at full receptor occupancy, provided that over the whole dose range the biological response is proportional to receptor stimulation. The present data show that in transfected MA-10(P+29) cells which over-express rat phosphodiesterase, the hormone-induced stimulation of cAMP and steroid production is directly coupled to receptor activation up to maximal occupation of the LH/CG receptor.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.