We present the design of an innovative wire antenna able to automatically hide or reveal its presence depending on the waveform of the received/transmitted signal. This unconventional behaviour is achieved through the use of a novel waveformselective cloaking metasurface exploiting a meander-like unit cell loaded with a lumped-element circuit capable to engineer the scattering of the antenna depending on the waveform of the impinging signal. Due to the time-domain response of the lumped-element circuit, the antenna is able switching its scattering behaviour when interacts with either a pulsed wave (PW) or a continuous wave (CW) signal. The proposed configuration paves the way to a new generation of cloaking devices for intelligent antenna systems, extending the concept of antenna as a device capable to sense the external environment and change its electromagnetic behaviour accordingly.
We show that properly designed mantle cloaks, consisting of patterned metallic sheets placed around cylindrical monopoles, allow tightly packing the same antennas together in a highly dense telecommunication platform. Our experimental demonstration is applied to the relevant example of two cylindrical monopole radiators operating for 3G and 4G mobile communications. The two antennas are placed in close proximity, separated by 1/10 of the shorter operational wavelength, and, after cloaking, are shown to remarkably operate as if isolated in free-space. This result paves the way to unprecedented co-siting strategies for multiple antennas handling different services and installed in overcrowded platforms, such as communication towers, satellite payloads, aircrafts, or ship trees. More broadly, this work presents a significant application of cloaking technology to improve the efficiency of modern communication systems
A spectral-domain technique to solve the scattering by perfectly conducting cylinders placed below a dielectric layer is presented. Propagation fields are expressed in an analytic form, in the frame of the cylindrical wave approach. The fields scattered by the buried objects are decomposed into cylindrical waves, which are, in turn, represented by plane-wave spectra. Due to the interaction with a layered layout, the scattered fields experience multiple infinite reflections at the boundaries of the layer. Using suitable reflection and transmission coefficients inside the plane-wave spectra, the interaction with such a layered geometry can be solved with a single-reflection approach. Multiple reflections are collected by a set of two scattered fields, i.e., an upward-propagating field, excited by the scatterers and transmitted up to the top medium, and a down-propagating one, which from the top medium reaches the scatterers after transmission through the layer. Therefore, the analytical theory is developed in a very compact way and can be solved through a fast and efficient numerical implementation. Numerical results are evaluated in an accurate way and validated by comparisons with results obtained with a multiple-reflection approach. The scattered field can be evaluated in any point of the domain, in the far-field as well as the near-field region. Two-dimensional maps displaying the magnitude of the total scattered field are reported, showing examples of applications of the technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.