This article describes how the time taken to execute a query and return the results, increase exponentially as the data size increases, leading to more waiting times of the user. Hadoop with its distributed processing capability is considered as an efficient solution for processing such large data. Hadoop's Default Data Placement Strategy (HDDPS) allocates the data blocks randomly across the cluster of nodes without considering any of the execution parameters. This result in non-availability of the blocks required for execution in local machine so that the data has to be transferred across the network for execution, leading to data locality issue. Also, it is commonly observed that most of the data intensive applications show grouping semantics. Hence during query execution, only a part of the Big-Data set is utilized. Since such execution parameters and grouping behavior are not considered, the default placement does not perform well resulting in several lacunas such as decreased local map task execution, increased query execution time, query latency, etc. In order to overcome such issues, an Optimal Data Placement Strategy (ODPS) based on grouping semantics is proposed. Initially, user history log is dynamically analyzed for identifying access pattern which is depicted as a graph. Markov clustering, a Graph clustering algorithm is applied to identify groupings among the dataset. Then, an Optimal Data Placement Algorithm (ODPA) is proposed based on the statistical measures estimated from the clustered graph. This in turn re-organizes the default data layouts in HDFS to achieve improved performance for Big-Data sets in heterogeneous distributed environment. Our proposed strategy is tested in a 15 node cluster placed in a single rack topology. The result has proved to be more efficient for massive datasets, reducing query execution time by 26% and significantly improves the data locality by 38% compared to HDDPS.
No abstract
In this data era, massive volumes of data are being generated every second in variety of domains such as Geoscience, Social Web, Finance, e-Commerce, Health Care, Climate modelling, Physics, Astronomy, Government sectors etc. Hadoop has been well-recognized as de factobig data processing platform that have been extensively adopted, and is currently widely used, in many application domains processing Big Data. Even though it is considered as an efficient solution for such complex query processing, it has its own limitation when the data to be processed exhibit interest locality. The data required for any query execution follows grouping behavior wherein only a part of the Big-Data is accessed frequently. During such scenarion, the time taken to execute a queryand return results, increases exponentially as the amount of data increases leading to much waiting time for the user. Since Hadoop default data placement strategy (HDDPS) does not consider such grouping behavior, it does not perform efficiently resulting in lacunas such as decreased local map task execution, increased query execution time etc. Hence proposed an Optimal Data Placement Strategy (ODPS) based on grouping semantics. In this paper we experiment the significance oftwo most promising clustering techniques viz. Hierarchical Agglomerative Clustering (HAC) and Markov Clustering (MCL) in grouping aware data placement for data intensive applications having interest locality. Initially user access pattern is identified by dynamically analyzing history log.Then both clustering techniques (HAC & MCL) are separately applied over the access pattern to obtain independent clusters. These clusters are interpreted and validated to extract the Optimal Data Groupings (ODG). Finally proposed strategy reorganizes the default data layouts in HDFSbased on ODG to achieve maximum parallel execution per group subjective to Load Balancer and Rack Awareness. Our proposed strategy is tested in 10 node cluster placed in a multi rack with Hadoop installed in every node deployed in cloud platform. Proposed strategy reduces the query execution time, significantly improves the data locality and has proved to be more efficient for massive datasets processing in heterogeneous distributed environment. Also MCL shows a marginal improved performance over HAC for queries exhibiting interest localities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.