If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.Abstract-A critical issue in the design of routing protocols for wireless sensor networks is the efficient utilization of resources such as scarce bandwidth and limited energy supply. Many routing schemes proposed in the literature try to minimize the energy consumed in routing or maximize the lifetime of the sensor network without taking into consideration limited capacities of nodes and wireless links. This can lead to congestion, increased delay, packet losses and ultimately to retransmission of packets, which will waste considerable amount of energy. This paper presents a Minimum-cost Capacity-constrained Routing (MCCR) protocol which minimize the total energy consumed in routing while guaranteeing that the total load on each sensor node and on each wireless link does not exceed its capacity. The protocol is derived from polynomial-time minimum-cost flow algorithms. Therefore protocol is simple and scalable. The paper improves the routing protocol in [1] to incorporate integrality, node capacity and link capacity constraints. This improved protocol is called Maximum Lifetime Capacity-constrained Routing (MLCR). The objective of MLCR protocol is to maximize the time until the first battery drains its energy subject to the node capacity and link capacity constraints. A strongly polynomial time algorithm is proposed for a special case of MLCR problem when the energy consumed in transmission by a sensor node is constant. Simulations are performed to analyzed the performance of the proposed protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.