Accurate circuit models derived from electromagnetic simulations have been used to fabricate photomixer sources with optimized high-impedance antennas. Output powers on the order of 1 W were measured for various designs spanning 0.6-2.7 THz. The improvement in output power ranged from 3 to 10 dB over more conventionally designed photomixers using broad-band log-spiral antennas. Measured data on single dipoles, twin dipoles, and twin slots are in good agreement with the characteristics predicted by the design simulations.
A general technique has been demonstrated at microwave and submillimeter-wave frequencies for photoconductive sampling in the frequency domain using photomixers and continuous-wave laser diodes. A microwave version in which two photomixers were coupled by a transmission line was developed to quantitatively test the concept from 0.05 to 26.5 GHz. A quasioptical version using antenna-coupled photomixers was demonstrated from 25 GHz to 2 THz. Such a system can outperform systems based on time-domain photoconductive sampling in frequency resolution, spectral brightness, system size, and cost.
Low-temperature-grown (LTG) GaAs is used as an optical-heterodyne converter or photomixer, to generate coherent continuous-wave (CW) output radiation at frequencies up to 5 THz. Photomixers consist of an epitaxial LTG-GaAs layer that is patterned with interdigitated metal electrodes, on which two laser beams are focused with their frequencies offset by the desired difference frequency. The difference-frequency power is coupled out of the photomixer using coplanar waveguide at low frequencies and using log-spiral, dipole, and slot antennas at higher frequencies. Difference-frequency power is limited by the maximum optical-pump power that the photomixer can withstand. Fiber-coupled photomixers were operated at 77 K-a configuration in which they exhibited improved heatsinking and, therefore, withstood higher pump power. Progress has been made in the development of photomixer local oscillators (LO's) for space-based receivers that use superconducting tunnel junctions and hot-electron bolometers as heterodyne detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.