Heterogeneous Fenton catalyst Fe 2 (MoO 4 ) 3 was prepared and the process efficiency was evaluated for oxidation of water-based Cyan flexo dye in synthetic aqueous solution and printing wastewater. The removal process of printing dye was analyzed by UV/VIS spectrophotometry, while dye mineralization was evaluated by the determination of total organic carbon content and chemical oxygen demand. Four determinants of the heterogeneous Fenton system, including initial dye concentration, iron concentration, pH and hydrogen peroxide concentration were investigated. Statistical method, definitive screening design was applied to generate optimal operational conditions of the four variables, which maximizes the process of dye removal. The initial dye concentration of 20 mgL -1 , catalyst dosage of 0.75 mgL -1 , pH of 2 and H 2 O 2 concentration of 11 mM were chosen as the best operational conditions, contributing to 82% of the process efficiency. The Fenton process efficiency of 79% was achieved within the treatment of printing wastewater under optimal conditions for a 90 minute reaction time. The maximum COD removal efficiency was 61.1%, while 67% mineralization was achieved. The obtained results confirmed synergistic effect of Fe 3+ and MoO 4 2− which contributed to high catalytic activity and high heterogeneous Fenton efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.