In recent years fuel cells have become prominent as an alternative source of energy to meet the society’s energy requirements. A control strategy derived from variable structure theory known as Sliding Mode Control (SMC) was proposed for an Isolated Boost topology which was mostly used in fuel cell systems. Converter operation and its detailed mathematical modelling are also presented. Then the converter with the control strategy suggested is simulated in MATLAB/SIMULINK and compared with other controllers. The results show that transient response of the converter is very fast and steady state error is reduced throughout the load change period with proposed control topology.
Now a day’s renewable energy sources became an interesting area of research of which fuel cells are emerged as an alternative source for producing electricity to meet the energy crisis. This led to a research on power conditioning systems through which fuel cell is interfaced to the utility. Of the different converter topologies Isolated full bridge boost converter (IFBC) topology is most suitable for fuel cell applications. In this paper a Predictive Switching Modulator (PSM) Control is proposed for the converter topology and its performance is compared with Linear Peak Current Mode control (LPCM), Non-Linear Carrier Control (NLC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.