Detecting and discriminating humans in video frames for surveillance applications is a demanding task. Identifying and highlighting humans by eliminating shadows from the video frames is vital for prudence motive. In this paper, a three-step procedure is proposed, which includes motion detection by background subtraction in live video frames, morphological gradient-based shadow removal, and human detection by Hybrid Feature Set (HFS), which comprises Histogram Oriented Gradient (HOG) and Local Binary Pattern (LBP) with adaptive Neuro-Fuzzy inference system. The first step incorporates static background subtraction and dynamic background subtraction. The second step is to remove shadows by using a morphological gradient with the horizontal directional mask. The third step includes near-field, mid-field, and far-field human detection by using an adaptive Neuro-Fuzzy inference system. The results obtained from the various performed experimental analysis demonstrates diverse parametrical measures, which outperforms comparatively when benchmark databases and real-time surveillance video frames were used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.