In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.
A multiple magnetic mirror array is formed at the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)] to study axial periodicity-influenced Alfvén spectra. Shear Alfvén waves (SAW) are launched by antennas inserted in the LAPD plasma and diagnosed by B-dot probes at many axial locations. Alfvén wave spectral gaps and continua are formed similar to wave propagation in other periodic media due to the Bragg effect. The measured width of the propagation gap increases with the modulation amplitude as predicted by the solutions to Mathieu’s equation. A two-dimensional finite-difference code modeling SAW in a mirror array configuration shows similar spectral features. Machine end-reflection conditions and damping mechanisms including electron-ion Coulomb collision and electron Landau damping are important for simulation.
The spatial evolution of the radial profile of the magnetic field of a shear Alfven wave launched by a disk exciter with radius on the order of the electron skin depth has been measured. The waves are launched using wire mesh disk exciters of 4 mm and 8 mm radius into a helium plasma of density about l.OXlO l2 cm-3 and magnetic field 1.1 kG. The electron skin depth o=c/wpe is about 5 mm. The current channel associated with the shear Alfven wave is observed to spread with distance away from the exciter. The spreading follows a cone-like pattern whose angle is given by tan 8=k A o, where kA is the Alfven wave number. The dependence of the magnetic profiles on wave frequency and disk size are presented. The effects of dissipation by electron-neutral collisions and Landau damping are observed. The observations are in excellent agreement with theoretical predictions [Morales et al., Phys. Plasmas 1, 3765 (1994)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.