Drought is one of the major threats to groundnut productivity, causing a greater loss than any other abiotic factor. Water stress conditions alter plant photosynthetic activity, impacting future growth and assimilating mobilization towards sink tissues. The purpose of this study was to investigate how drought impacts the photosynthesis of plants and its links to drought tolerance. The influence of reproductive stage drought on photosynthetic activity and chlorophyll fluorescence of groundnut is well studied. The experiment was conducted in Kharif 2019 (Jul-Sep), where recent series in groundnut genotypes (60 nos) sown under rainfed conditions and water stress was created by withholding irrigation for 20 days between 35-55 days after sowing in the field to simulate drought conditions. Imposition of water deficit stress reduced PS II efficiency, which significantly altered the photosynthetic rate in the leaf. Observation of gas exchange parameters viz., photosynthetic rate, stomatal conductance and transpiration rate after 20 days of stress imposition revealed that of all 60 genotypes, 20 genotypes (VG 17008, VG 17046VG 18005, VG 18102, VG 18077, VG 19572, VG 19709, VG 18111, VG19561, VG19576, VG 19620, VG 19681, VG 19688, etc.,) had better Photosynthetic rate, Stomatal conductance. Similarly, PS II efficiency analyzed through fluorescence meter revealed that among the 60 and all the genotypes given above recorded higher value in Fv/Fm. Results obtained from Cluster analysis and PCA confirmed that photosynthetic rate and Fv/Fm is useful parameter in screening adapted cultivars under drought stress. These findings lay the groundwork for a future study to decipher the molecular pathways underpinning groundnut drought resistance.
Agroforestry benefits farmers, making it a sustainable alternative to monoculture. To create a viable Eucalyptus clone-based agroforestry system, a field experiment was carried out in Tamil Nadu, India. The economics and changes in the soil qualities were evaluated by growing agricultural and horticultural crops, namely pearl millet, sorghum, maize, sesame, small onions, green gram, and red gram, as intercrops under eight-month-old eucalyptus clone trees using a randomised block design in three replications at a spacing of 3 m × 1.5 m. The plots for the intercrops and the eucalyptus clones were kept apart for comparison. Maize showed the greatest drop in plant height during all the phases, including 30 DAS, 60 DAS, and harvest, while small onions showed the least reduction in plant height. Sesame and small onions showed the greatest drop in dry matter production, whereas sorghum showed the least. In terms of the intercrop yield reduction, maize had the biggest reduction and green gram had the lowest. Red gram had the largest crop equivalent yield, whereas maize had the lowest. The volume of the trees was generally increased more favourably by red gram than by green gram. The intercrops had some effects on the nutrients in the soil. Red gram intercropping had the highest levels of EC, soil organic carbon, available soil nitrogen, available soil phosphorus, and available soil potassium, while the sole tree treatment had the lowest levels. Small onions, red gram, and sesame were the crops; tree + small onion, tree + red gram, and tree + sesame were the intercrop combinations with the highest gross income, net income, and B:C in the intercropping treatment alone. Tree + green gram had the highest land equivalent ratio (LER) and the red gram, sesame, and small onion intercrops were shown to be the most profitable. Although the present study supports a complementary relationship, the lack of awareness among farmers of Eucalyptus allelopathy formed the major limitation.
Climate change mainly alters the plant phyllosphere and rhizosphere resource allocations. Compared with shoot parameters, there is less information about how roots, especially root system architecture (RSA) and their interactions with others, may respond to elevated temperature changes. These responses could greatly influence different species acquisition of resources and their competition with their neighbours. The main aim of this experiment was to evaluate the effects of ambient temperature (T1) and elevated temperature (+4oC) (T2) in Open-top chamber (OTC) on root traits and microbial interaction changes in cotton (Gossypium hirsutum L.). A pot experiment was conducted at the Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, during 2020-2021 to investigate the root traits and microbial interactions. Cotton varieties, namely KC3, SVPR6, TSH325, TSH357 and TSH375 were screened at the seedling level for cellular thermo tolerance and further, at the root level, these selected varieties were studied against the elevated temperature condition for 10 days in OTC during the stage of flowering to boll development period along with control temperature condition. Root interactions' intensity and direction may fluctuate as a result of variations in RSA responses between species. Negative root interactions could become more intense under high temperature circumstances and species with bigger roots and greater early root growth had stronger competitive advantages. The present findings showed that elevated temperatures promote various microbial growths in the geothermal regions, enhancing the root angle and root length of cotton species. Among the genotypes, KC3 and SVPR6 performed better under elevated temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.