Hexagonal YMnO(3) shows a unique improper ferroelectricity induced by structural trimerization. Extensive research on this system is primarily due to its candidacy for ferroelectric memory as well as the intriguing coexistence of ferroelectricity and magnetism. Despite this research, the true ferroelectric domain structure and its relationship with structural domains have never been revealed. Using transmission electron microscopy and conductive atomic force microscopy, we observed an intriguing conductive 'cloverleaf' pattern of six domains emerging from one point--all distinctly characterized by polarization orientation and structural antiphase relationships. In addition, we discovered that the ferroelectric domain walls and structural antiphase boundaries are mutually locked and this strong locking results in incomplete poling even when large electric fields are applied. Furthermore, the locked walls are found to be insulating, which seems consistent with the surprising result that the ferroelectric state is more conducting than the paraelectric state. These fascinating results reveal the rich physics of the hexagonal system with a truly semiconducting bandgap where structural trimerization, ferroelectricity, magnetism and charge conduction are intricately coupled.
The motion of atoms in a solid always responds to cooling or heating in a way that is consistent with the symmetry of the given space group of the solid to which they belong. When the atoms move, the electronic structure of the solid changes, leading to different physical properties. Therefore, the determination of where atoms are and what atoms do is a cornerstone of modern solid-state physics. However, experimental observations of atomic displacements measured as a function of temperature are very rare, because those displacements are, in almost all cases, exceedingly small. Here we show, using a combination of diffraction techniques, that the hexagonal manganites RMnO3 (where R is a rare-earth element) undergo an isostructural transition with exceptionally large atomic displacements: two orders of magnitude larger than those seen in any other magnetic material, resulting in an unusually strong magneto-elastic coupling. We follow the exact atomic displacements of all the atoms in the unit cell as a function of temperature and find consistency with theoretical predictions based on group theories. We argue that this gigantic magneto-elastic coupling in RMnO3 holds the key to the recently observed magneto-electric phenomenon in this intriguing class of materials.
The controllability over strongly correlated electronic states promises unique electronic devices. A recent example is an optically induced ultrafast switching device based on the transition between the correlated Mott insulating state and a metallic state of a transition metal dichalcogenide 1T-TaS2. However, the electronic switching has been challenging and the nature of the transition has been veiled. Here we demonstrate the nanoscale electronic manipulation of the Mott state of 1T-TaS2. The voltage pulse from a scanning tunnelling microscope switches the insulating phase locally into a metallic phase with irregularly textured domain walls in the charge density wave order inherent to this Mott state. The metallic state is revealed as a correlated phase, which is induced by the moderate reduction of electron correlation due to the charge density wave decoherence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.