Repetitive stimulation of small diameter primary afferent fibres produces a progressive increase in action potential discharge (windup) and a prolonged increase in the excitability of neurones in the spinal cord following the stimulus. Previous studies have demonstrated that windup is the consequence of the temporal summation of slow synaptic potentials and that the slow potentials and windup are reduced by pretreatment with N-methyl-D-aspartic acid (NMDA) antagonists. We have now examined whether primary afferent induced hypersensitivity states in flexor motoneurones are also dependent on the activation of NMDA receptors and whether windup is a possible trigger for the production of the central hypersensitivity. Both a non-competitive (MK-801) and a competitive (D-CPP) NMDA antagonist, at doses that did not modify the baseline reflex, reduced the facilitation of the flexor reflex produced by either brief electrical stimulation of the sural nerve (1 Hz for 20 sec at C-fibre strength), or by the cutaneous application of the chemical irritant mustard oil. These antagonists also prevented windup from occurring in the motoneurones. When the the MK-801 and the D-CPP were administered once a state of central facilitation had been induced by prior treatment with mustard oil, they returned the facilitated reflex to its pretreatment level. These results indicate that NMDA receptors are involved in the induction and maintenance of the central sensitization produced by high threshold primary afferent inputs. Because central sensitization is likely to contribute to the post-injury pain hypersensitivity states in man, these data have a bearing both on the potential role of NMDA antagonists for pre-emptive analgesia and for treating established pain states.
While neuroimmune interactions are increasingly recognized as important in nociceptive processing, the nature and functional significance of these interactions is not well defined. There are multiple reports that the activation of spinal microglia is a critical event in the generation of neuropathic pain behaviors but the mediators of this activation remain disputed. Here we show that the chemokine CCL2, produced by both damaged and undamaged primary sensory neurons in neuropathic pain states in rats, is released in an activity dependent manner from the central terminals of these fibres. We also demonstrate that intraspinal CCL2 in naïve rats leads to activation of spinal microglia and neuropathic pain-like behavior. An essential role for spinal CCL2 is demonstrated by the inhibition of neuropathic pain behavior and microglial activation by a specific neutralising antibody to CCL2 administered intrathecally. Thus, the neuronal expression of CCL2 provides a mechanism for immune activation, which in turn regulates the sensitivity of pain signaling systems in neuropathic pain states.
Central sensitization, the hyperexcitability of spinal processing that often accompanies peripheral injury, is a major component of many persistent pain states. Here we report that the neurotrophin, brain-derived neurotrophic factor (BDNF), is a modulator of excitability within the spinal cord and contributes to the mechanism of central sensitization. BDNF, localized in primary sensory neuron cell bodies and central terminals, potentiates nociceptive spinal reflex responses in an in vitro spinal cord preparation and induces c-fos expression in dorsal horn neurons. NMDA receptor-mediated responses, known as a major contributor to central sensitization, were significantly enhanced by exogenous BDNF. Systemic NGF treatment, a procedure that mimics peripheral inflammatory states, raises BDNF levels in sensory neurons and increases nociceptive spinal reflex excitability. This increased central excitability is reduced by trkB-IgG, a BDNF "antagonist." We also show directly that inflammatory pain-related behavior depends on BDNF release in vivo. Thus behavioral nociceptive responses induced by intraplantar formalin and by intraplantar carageenan are significantly attenuated by trkB-IgG. Hence BDNF is appropriately localized and regulated in inflammatory states and is sufficient and necessary for the expression of central sensitization in the spinal cord. We propose that BDNF may function as a modulator of central sensitization in pathological states, and our results suggest that pharmacological antagonism of BDNF may prove an effective and novel analgesic strategy for the treatment of persistent inflammatory pain states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.