Context. Monthly binned γ-ray light curves of 236 bright γ-ray sources, particularly blazars, selected from a sample of 2278 highgalactic latitude objects observed with Fermi-LAT show flux variability characterized by power spectral densities consisting of a single power-law component, ranging from Brownian to white noise. Aims. The main goal here is to assess the Ornstein-Uhlenbeck (OU) model by studying the range of its three parameters that reproduces these statistical properties. Methods. We develop procedures for extracting values of the three OU model parameters (mean flux, correlation length, and random amplitude) from time series data and apply them to compare numerical integrations of the OU process with the Fermi-LAT data. Results. The OU process fully describes the statistical properties of the flux variations of the 236 blazars. The distributions of the extracted OU parameters are narrowly peaked around well-defined values (σ, µ, θ) = (0.2, −8.4, 0.5) with variances (0.004, 0.07, 0.13). The distributions of rise and the decay time scales of flares in the numerical simulations, meaning major flux variations fulfilling predefined criteria, are in agreement with the observed ones. The power spectral densities of the synthetic light curves are statistically indistinguishable from those of the measured light curves. Conclusions. The long-term γ-ray flux variability of blazars on monthly time scales is well described by a stochastic model that involves only three parameters. The methods described here are powerful tools for studying randomness in light curves and thereby for constraining the physical mechanisms responsible for the observed flux variations.
Context. On 2019 October 25, the Fermi-Large Area Telescope observed the first ever γ-ray flare from the radio-loud narrow-line Seyfert 1 galaxy PKS 2004−447 (z = 0.24). Prior to this discovery, only four sources of this type had shown a flare at gigaelectronvolt energies. Aims. We report on follow-up observations in the radio, optical-UV, and X-ray bands that were performed by ATCA, the Neil Gehrels Swift Observatory, XMM-Newton, and NuSTAR, respectively, and analyse these multi-wavelength data with a one-zone leptonic model in order to understand the physical mechanisms that were responsible for the flare. Methods. We study the source’s variability across all energy bands and additionally produce γ-ray light curves with different time binnings to study the variability in γ-rays on short timescales during the flare. We examine the combined X-ray spectrum from 0.5 to 50 keV by describing the spectral shape with an absorbed power law. We analyse multi-wavelength datasets before, during, and after the flare and compare these with a low activity state of the source by modelling the respective spectral energy distributions (SEDs) with a one-zone synchrotron inverse Compton radiative model. Finally, we compare the variability and the SEDs to γ-ray flares previously observed from other γ-loud narrow-line Seyfert 1 galaxies. Results. At γ-ray energies (0.1−300 GeV) the flare reached a maximum flux of (1.3 ± 0.2) × 10−6 ph cm−2 s−1 in daily binning and a total maximum flux of (2.7 ± 0.6) × 10−6 ph cm−2 s−1 when a 3 h binning was used. With a photon index of Γ0.1−300 GeV = 2.42 ± 0.09 during the flare, this corresponds to an isotropic γ-ray luminosity of (2.9 ± 0.8) × 1047 erg s−1. The γ-ray, X-ray, and optical-UV light curves that cover the end of September to the middle of November show significant variability, and we find indications for flux-doubling times of ∼2.2 h at γ-ray energies. The soft X-ray excess, which is observed for most narrow-line Seyfert 1 galaxies, is not visible in this source. During the flare, the SED exhibits large Compton dominance. While the increase in the optical-UV range can be explained by enhanced synchrotron emission, the elevated γ-ray flux can be accounted for by an increase in the bulk Lorentz factor of the jet, similar to that observed for other flaring γ-ray blazars.
The Fermi Large Area Telescope (LAT) lightcurve repository (LCR) is a publicly available, continually updated library of gamma-ray lightcurves of variable Fermi-LAT sources generated over multiple timescales. The Fermi-LAT LCR aims to provide publication-quality lightcurves binned on timescales of 3, 7, and 30 days for 1525 sources deemed variable in the source catalog of the first 10 yr of Fermi-LAT observations. The repository consists of lightcurves generated through full likelihood analyses that model the sources and the surrounding region, providing fluxes and photon indices for each time bin. The LCR is intended as a resource for the time-domain and multimessenger communities by allowing users to search LAT data quickly to identify correlated variability and flaring emission episodes from gamma-ray sources. We describe the sample selection and analysis employed by the LCR and provide an overview of the associated data access portal.
Context. It has become evident that one-zone synchrotron self-Compton models are not always adequate for very high-energy (VHE) gamma-ray-emitting blazars. While two-component models perform better, they are difficult to constrain due to the large number of free parameters. Aims. In this work, we make a first attempt at taking into account the observational constraints from very long baseline interferometry (VLBI) data, long-term light curves (radio, optical, and X-rays), and optical polarisation to limit the parameter space for a two-component model and test whether or not it can still reproduce the observed spectral energy distribution (SED) of the blazars. Methods. We selected five TeV BL Lac objects based on the availability of VHE gamma-ray and optical polarisation data. We collected constraints for the jet parameters from VLBI observations. We evaluated the contributions of the two components to the optical flux by means of decomposition of long-term radio and optical light curves as well as modelling of the optical polarisation variability of the objects. We selected eight epochs for these five objects based on the variability observed at VHE gamma rays, for which we constructed the SEDs that we then modelled with a two-component model. Results. We found parameter sets which can reproduce the broadband SED of the sources in the framework of two-component models considering all available observational constraints from VLBI observations. Moreover, the constraints obtained from the long-term behaviour of the sources in the lower energy bands could be used to determine the region where the emission in each band originates. Finally, we attempt to use optical polarisation data to shed new light on the behaviour of the two components in the optical band. Our observationally constrained two-component model allows explanation of the entire SED from radio to VHE with two co-located emission regions.
The evolution of the spectral energy distribution during flares constrains models of particle acceleration in blazar jets. The archetypical blazar BL Lacertae provided a unique opportunity to study spectral variations during an extended strong flaring episode from 2020 to 2021. During its brightest γ-ray state, the observed flux (0.1–300 GeV) reached up to $2.15\, \times \, 10^{-5}\, \rm {ph\, cm^{-2}\, s^{-1}}$, with sub-hour-scale variability. The synchrotron hump extended into the X-ray regime showing a minute-scale flare with an associated peak shift of inverse-Compton hump in γ-rays. In shock acceleration models, a high Doppler factor value >100 is required to explain the observed rapid variability, change of state, and γ-ray peak shift. Assuming particle acceleration in minijets produced by magnetic reconnection during flares, on the other hand, alleviates the constraint on required bulk Doppler factor. In such jet-in-jet models, observed spectral shift to higher energies (towards TeV regime) and simultaneous rapid variability arises from the accidental alignment of a magnetic plasmoid with the direction of the line of sight. We infer a magnetic field of ∼0.6 G in a reconnection region located at the edge of broad-line region (∼0.02 pc). The scenario is further supported by lognormal flux distribution arising from merging of plasmoids in reconnection region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.