Background Various durations of survival have been observed in the xenotransplantation of life-supporting alpha-1,3-galactosyltransferase knockout (GalT-KO) porcine kidneys into nonhuman primates (NHPs). While others have demonstrated loss of GalT-KO transplanted kidneys within two weeks, we have reported an average survival of 51 days with the co-transplantation of the kidney and vascularized thymus and an average of 29 days with the kidney alone. In order to determine the factors responsible for this difference in survival time, we performed xenogeneic kidney transplantations into cynomolgus monkeys with an anti-CD40L-based regimen using two different strains of GalT-KO swine, one derived from MGH-Miniature swine and the other obtained from Meji University. Materials and Methods Eight cynomolgus moneys received GalT-KO kidneys. Three kidney grafts were from MGH/NIBS GalT-KO pigs and 5 GalT-KO grafts were from MEIJI GalT-KO swine. All cynomolgus recipients were treated identically. Results Recipients of kidneys from the MGH GalT-KO swine, produced by nuclear transfer in Japan, survived an average of 28.7 days, while recipients of MEIJI GalT-KO swine survived an average of 9.2 days. Among the differences between these two groups, one potentially revealing disparity was that the MEIJI swine were positive for porcine-CMV, while the MGH-derived swine were negative. Conclusions This is the first study comparing renal xenotransplantation from two different sources of GalT-KO swine into NHPs at a single center. The results demonstrate that porcine-CMV may be responsible for early loss of GalTKO swine kidney xenografts.
In this study, we demonstrated the beneficial effects of perioperative administration of anti-HMGB1 antibody in reducing renal IRI in a clinically relevant, large animal model.
Background Nuclear transfer (NT) technologies offer a means for producing the genetically modified pigs necessary to develop swine models for mechanistic studies of disease processes as well as to serve as organ donors for xenotransplantation. Most previous studies have used commercial pigs as surrogates. Method and Results In this study, we established a cloning technique for miniature pigs by somatic cell nuclear transfer (SCNT) using Nippon Institute for Biological Science (NIBS) miniature pigs as surrogates. Moreover, utilizing this technique, we have successfully produced an α-1, 3-galactosyltransferase knockout (GalT-KO) miniature swine. Fibroblasts procured from a NIBS miniature pig fetus were injected into 1312 enucleated oocytes. The cloned embryos were transferred to 11 surrogates of which five successfully delivered 13 cloned offspring; the production efficiency was 1.0% (13/1312). In a second experiment, lung fibroblasts obtained from neonatal GalT-KO MGH miniature swine were used as donor cells and 1953 cloned embryos were transferred to 12 surrogates. Six cloned offspring were born from five surrogates, a production efficiency of 0.3% (6/1953). Conclusions These results demonstrate successful establishment of a miniature pig cloning technique by SCNT using NIBS miniature pigs as surrogates. To our knowledge, this is the first demonstration of successful production of GalT-KO miniature swine using miniature swine surrogates. This technique could help to ensure a stable supply of the cloned pigs through the use of miniature pig surrogates and could expand production in countries with limited space or in facilities with special regulations such as specific pathogen-free or good laboratory practice.
BackgroundHyperlipidemia animal models have been established, but complete gene expression profiles of the transition from normal lipid levels have not been obtained. Miniature pigs are useful model animals for gene expression studies on dietary-induced hyperlipidemia because they have a similar anatomy and digestive physiology to humans, and blood samples can be obtained from them repeatedly.MethodologyTwo typical dietary treatments were used for dietary-induced hyperlipidemia models, by using specific pathogen-free (SPF) Clawn miniature pigs. One was a high-fat and high-cholesterol diet (HFCD) and the other was a high-fat, high-cholesterol, and high-sucrose diet (HFCSD). Microarray analyses were conducted from whole blood samples during the dietary period and from white blood cells at the end of the dietary period to evaluate the transition of expression profiles of the two dietary models.Principal FindingsVariations in whole blood gene expression intensity within the HFCD or the HFCSD group were in the same range as the controls provide with normal diet at all periods. This indicates uniformity of dietary-induced hyperlipidemia for our dietary protocols. Gene ontology- (GO) based functional analyses revealed that characteristics of the common changes between HFCD and HFCSD were involved in inflammatory responses and reproduction. The correlation coefficient between whole blood and white blood cell expression profiles at 27 weeks with the HFCSD diet was significantly lower than that of the control and HFCD diet groups. This may be due to the effects of RNA originating from the tissues and/or organs.ConclusionsNo statistically significant differences in fasting plasma lipids and glucose levels between the HFCD and HFCSD groups were observed. However, blood RNA analyses revealed different characteristics corresponding to the dietary protocols. In this study, whole blood RNA analyses proved to be a useful tool to evaluate transitions in dietary-induced hyperlipidemia gene expression profiles in miniature pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.