We analyse the transition state energies for 249 hydrogenation/dehydrogenation reactions of atoms and simple molecules over close-packed and stepped surfaces and nanoparticles of transition metals using Density Functional Theory. Linear energy scaling relations are observed for the transition state structures leading to transition state scaling relations for all the investigated reactions. With a suitable choice of reference systems the transition state scaling relations form a universality class that can be approximated with one single linear relation describing the entire range of reactions over all types of surfaces and nanoclusters.
We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K ͑M 1 ͒; and 1 alkali, alkaline earth or 3d / 4d transition metal atom ͑M 2 ͒ plus two to five ͑BH 4 ͒ − groups, i.e., M 1 M 2 ͑BH 4 ͒ 2-5 , using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M 1 ͑Al/ Mn/ Fe͒͑BH 4 ͒ 4 , ͑Li/ Na͒Zn͑BH 4 ͒ 3 , and ͑Na/ K͒͑Ni/ Co͒͑BH 4 ͒ 3 alloys are found to be the most promising, followed by selected M 1 ͑Nb/ Rh͒͑BH 4 ͒ 4 alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.