When people engage in conversation, they tailor their utterances to their conversational partners, whether these partners are other humans or computational systems. This tailoring, or adaptation to the partner takes place in all facets of human language use, and is based on a mental model or a user model of the conversational partner. Such adaptation has been shown to improve listeners' comprehension, their satisfaction with an interactive system, the efficiency with which they execute conversational tasks, and the likelihood of achieving higher level goals such as changing the listener's beliefs and attitudes. We focus on one aspect of adaptation, namely the tailoring of the content of dialogue system utterances for the higher level processes of persuasion, argumentation and advice-giving. Our hypothesis is that algorithms that adapt content for these processes, according to a user model, will improve the usability, efficiency, and effectiveness of dialogue systems. We describe a multimodal dialogue system and algorithms for adaptive content selection based on multi-attribute decision theory. We demonstrate experimentally the improved efficacy of system responses through the use of user models to both tailor the content of system utterances and to manipulate their conciseness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.