SUMMARY1. In ten normal volunteers, a transcranial magnetic or electric stimulus that was subthreshold for evoking an EMG response in relaxed muscles was used to condition responses evoked by a later, suprathreshold magnetic or electric test shock. In most experiments the test stimulus was given to the lateral part of the motor strip in order to evoke EMG responses in the first dorsal interosseous muscle (FDI).2. A magnetic conditioning stimulus over the hand area of cortex could suppress responses produced in the relaxed FDI by a suprathreshold magnetic test stimulus at interstimulus intervals of 1-6 ms. At interstimulus intervals of 10 and 15 ms, the test response was facilitated.3. Using a focal magnetic stimulus we explored the effects of moving the conditioning stimulus to different scalp locations while maintaining the magnetic test coil at one site. If the conditioning coil was moved anterior or posterior to the motor strip there was less suppression of test responses in the FDI. In contrast, stimulation at the vertex could suppress FDI responses by an amount comparable to that seen with stimulation over the hand area. With the positions of the two coils reversed, conditioning stimuli over the hand area suppressed responses evoked in leg muscles by vertex test shocks.4. The intensity of both conditioning and test shocks influenced the amount of suppression. Small test responses were more readily suppressed than large responses. The best suppression was seen with small conditioning stimuli (0 7-0 9 times motor threshold in relaxed muscle); increasing the intensity to motor threshold or above resulted in less suppression or even facilitation.5. Two experiments suggested that the suppression was produced by an action * Present address: Third Department of Internal Medicine, Division of Neurology, Yamagata University, School of Medicine, 2-2-2 Iida-Nishi, Yamagata City 990-23, Yamagata, Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.