B7-H3, a member of the B7 family of the Ig superfamily proteins, is expressed on the surface of the antigen-presenting cells and down-regulates T cell functions by engaging an unknown counterreceptor on T cells. Although B7-H3 is ubiquitously expressed, its potential nonimmune functions have not been addressed. We found that B7-H3 is highly expressed in developing bones during embryogenesis and that its expression increases as osteoblast precursor cells differentiate into mature osteoblasts. In vitro bone formation by osteoblastic cells was inhibited when B7-H3 function was interrupted by the soluble recombinant protein B7-H3-Fc. Analysis of calvarial cells derived from neonatal B7-H3 knockout (KO) mice revealed normal numbers of osteoblast precursor cells possessing a normal proliferative capacity. However, the B7-H3-deficient calvarial cells exhibited impaired osteogenic differentiation, resulting in decreased mineralized bone formation in vitro. These results suggest that B7-H3 is required for the later phase of osteoblast differentiation. Although B7-H3 KO mice had no gross skeletal abnormalities, they displayed a lower bone mineral density in cortical (but not trabecular) bones compared with WT controls. Consistent with the reduced bone mineral density, the femurs of B7-H3 KO mice were more susceptible to bone fracture compared with those of WT mice. Taken together, these results indicate that B7-H3 and its unknown counterreceptor play a positive regulatory role in bone formation. In addition, our findings identified B7-H3 as another molecule that has a dual role in the bone-immune interface.
The relationship between bone quality and strength was studied in 11 BXH recombinant inbred (RI) strains of mice. The bone quality parameters studied were bone mineralization, microhardness, architecture, and connectivity. Previous studies have demonstrated considerable variability in bone density, biomechanical properties, and microstructure among inbred strains of mice. In particular, C3H/HeJ (C3H) mice exhibit thicker femoral and vertebral cortices and fewer trabeculae in the vertebral body compared with C57BL/6J (B6) mice, despite having similar vertebral bone strength. A set of RI mouse strains has been generated from B6 and C3H (denoted BXH) in an attempt to isolate genetic regulation of numerous traits, including bone. The objective of this study was to investigate relationships among bone quality and bone strength in femurs and vertebrae among BXH RI mice. The study involved 11 BXH RI strains of female mice (n = 5-7) as well as the B6 and C3H progenitor strains. Parameters contributing to bone quality were evaluated, including BMD, bone mineralization, microhardness, architecture, and connectivity. There was a strong correlation between femoral and vertebral BMD in all strains (P < 0.001) except in BXH-9 and -10 (P < 0.001). Within the vertebrae, cortical bone was more mineralized than trabecular bone, and a strong correlation existed between the two (P < 0.001). However, cortical microhardness did not differ from trabecular microhardness. Cortical bone was more mineralized in the femur than in the vertebrae and significantly harder, by 30%. There was a wide range in trabecular connectivity, architecture, and femur geometry among BXH RI strains. BMD explained 43% of vertebral bone strength but only 11% of femoral bone strength. Trabecular connectivity explained an additional 8% of vertebral strength, while mineralization and femur geometry explained 7% and 50% of femoral strength, respectively. Different bone quality parameters had varying influences on bone mechanical properties, depending on bone site. BMD may play a larger role in explaining bone strength in the vertebrae than in the femur. Moreover, cortical bone in the femur is harder than in vertebrae. The control of cortical bone material properties may be site-dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.