This paper presents an analysis of the interactions between stimulation design and two important geomechanical effects: the variation of least principal stress (S hmin) between lithological layers and the stress shadow effect that arises from simultaneously propagating adjacent hydraulic fractures. To demonstrate these interactions, hydraulic fracture propagation is modeled with a 5-layer geomechanical model representing an actual case study. The model consists of a profile of S hmin measurements made within, below and above the producing interval. The stress variations between layers leads to an overall upward fracture propagation and proppant largely above the producing interval. This is due to interactions between the pressure distribution within the fracture and the stress contrast in the multiple layers. A sensitivity study is done to investigate the complex 3-D couplings between geomechanical constraints and well completion design parameters such as landing zone, cluster spacing, perforation diameter, flow rate and proppant concentration. The simulation results demonstrate the importance of a well characterized stress stratigraphy for prediction of hydraulic fracture characteristics and optimization of operational parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.