Alternative fuels have numerous advantages compared to fossil fuels as they are renewable, biodegradable; provide energy security and foreign exchange saving besides addressing environmental concerns and socio-economic issues as well. Renewable fuels can be used predominantly as fuel for both transportation and power generation applications. Improved engine performance with reduced engine exhaust emissions is a major research objective in engine development. Today, the use of biomass derived producer gas is more relevant for addressing rural power generation and is a promising technique for controlling both nitric oxide (NO x ) and soot emission levels. In view of this, exhaustive experiments on the use of Honge oil methyl ester (HOME)-Producer gas in a dual fuel engine have been carried out with an intension of improving its fuel efficiency. This paper mainly presents results on a single cylinder four stroke direct injection diesel engine operated in dual fuel mode using HOME-Producer gas combination with and without bio-ethanol addition and thermal barrier coating (TBC). Further, the results were compared with diesel-producer gas mode of operation. Experimental investigation on dual fuel operation using HOME þ 5% bioethanol (BE5) -Producer gas operation with TBC showed 12.35% increased brake thermal efficiency with decreased hydrocarbon and carbon monoxide emissions and increased NO x emission levels compared to HOME-Producer gas mode of operation.
Biomass has been pretreated by hydrothermal explosion using different experimental conditions of temperature between 135 and 173°C and operating time of 45 minutes. The effects of hydrothermal explosion conditions have been investigated by measuring chemical compositions (cellulose, hemicelluloses and lignin) in Calliandra calothyrsus. Hydrothermal explosion pretreatment removes the major part of the hemicelluloses, and makes the high cellulose in the solid material for further enzyme hydrolysis. At severity factor of (log Ro) 3.82 (173 o C, 7.5 bar, 45 min), the biomass fibers contained the significant lowest hemicelluloses and the highest of celluloses at 4.82 % DW and 58.26 % DW, respectively. Since Calliandra calothyrsus has higher lignin content, lignin structure might be resisting hemicelluloses degradation by hydrothermal explosion pretreatment. Therefore, hydrothermal explosion of lignocellulosic materials to remove hemicelluloses might significantly enhance the efficiency of cellulose hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.