Low frequency thermal cycling tests were carried out on four types of cast iron (viz., austempered ductile iron, pearlitic ductile iron, compacted/vermicular graphite iron and grey cast iron) at predetermined ranges of thermal cycling temperatures. The specimens were unconstrained. Results show that austempered ductile iron has the highest thermal cycling resistance, followed by pearlitic ductile iron and compacted graphite iron, while grey cast iron exhibits the lowest resistance. Microstructural analysis of test specimens subjected to thermal cycling indicates that matrix decomposition and grain growth are responsible for the reduction in hardness while graphite oxidation, de-cohesion and grain boundary separation are responsible for the reduction in the modulus of elasticity upon thermal cycling.
Erosion resistance of four types of cast iron of different microstructures and graphite morphologies (viz., grey cast iron, compacted graphite iron, spheroidal graphite iron and austempered ductile iron) was evaluated in three different erosive media. Results indicate that austempered ductile iron has the highest erosion resistance in all three media, followed by spheroidal graphite iron, compacted graphite iron and grey cast iron, in that order. Graphite morphology has a significant effect on the erosion resistance of these irons in quartz-water and iron oxide-oil slurry. However, the matrix microstructure determines the erosion resistance of these irons in quartz-oil slurry. The parameter HIE (which is the ratio of the Brinell hardness number to Young's modulus of the material) has been found to be a good indicator of erosive wear in quartz-oil slurry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.