The Stirling engine is deemed to play a role in the near future of power generation. However, there is a large performance difference between the real and ideal Stirling engine. The use of sinusoidal motion for both displacer and piston in current applications is one of the reasons for this difference as it limits heat transfer. This paper investigated the use of non-sinusoidal rise-dwell-fall-dwell (RDFD) motion on both displacer and piston to improve the performance of a real Stirling engine and compared it to the conventional sinusoidal motion crankshaft driven Stirling engine. A gamma configuration Stirling engine test rig with a data acquisition system was constructed for this investigation. Among the four flywheels with each specifically designed cam profile tested, one was with sinusoidal motion while the remaining three were non-sinusoidal for comparison. The use of non-sinusoidal RDFD cam with 135° displacer dwell improved more than 36% thermal efficiency over sinusoidal motion crankshaft Stirling engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.