We present the physical properties of AKARI sources without optical counterparts in optical images from the Hyper Suprime-Cam (HSC) on the Subaru telescope. Using the AKARI infrared (IR) source catalog and HSC optical catalog, we select 583 objects that do not have HSC counterparts in the AKARI North Ecliptic Pole (NEP) wide survey field (∼ 5 deg 2). Because the HSC limiting magnitude is deep (g AB ∼ 28.6), these are good candidates for extremely red star-forming galaxies (SFGs) and/or active galactic nuclei (AGNs), possibly at high redshifts. We compile multi-wavelength data out to 500 µm and use it for Spectral Energy Distribution (SED) fitting with CIGALE to investigate the
Fast radio bursts (FRBs) are mysterious millisecond pulses in radio, most of which originate from distant galaxies. Revealing the origin of FRBs is becoming central in astronomy. The redshift evolution of the FRB energy function, i.e. the number density of FRB sources as a function of energy, provides important implications for the FRB progenitors. Here we show the energy functions of FRBs selected from the recently released Canadian Hydrogen Intensity Mapping Experiment (CHIME) catalogue using the Vmax method. The Vmax method allows us to measure the redshift evolution of the energy functions as it is without any prior assumption on the evolution. We use a homogeneous sample of 164 non-repeating FRB sources, which are about one order of magnitude larger than previously investigated samples. The energy functions of non-repeating FRBs show Schechter function-like shapes at z ≲ 1. The energy functions and volumetric rates of non-repeating FRBs decrease towards higher redshifts similar to the cosmic stellar-mass density evolution: there is no significant difference between the non-repeating FRB rate and cosmic stellar-mass density evolution with a 1 per cent significance threshold, whereas the cosmic star-formation rate scenario is rejected with a more than 99 per cent confidence level. Our results indicate that the event rate of non-repeating FRBs is likely controlled by old populations rather than young populations which are traced by the cosmic star-formation rate density. This suggests old populations such as old neutron stars and black holes as more likely progenitors of non-repeating FRBs.
In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nuclei (AGN) is crucial. However, AGNs are often missed in optical, UV and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (mid-IR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g., WISE and Spitzer, have gaps between the mid-IR filters. Therefore, star forming galaxy (SFG)-AGN diagnostics in the mid-IR were limited. The AKARI satellite has a unique continuous 9-band filter coverage in the near to mid-IR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution (SED) modelling software, CIGALE, to find AGNs in mid-IR. We found 126 AGNs in the NEP-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g., JWST, we expect to find more AGNs with our method.
NOTATION a a, a, A d = differential symbol f(a) 2 2b n no = diameter of the particle = geometric number mean diameter, GNMD = geometric mass mean diameter, GMMD = constant in the Cunningham correction (0.864) = frequency of size distribution = mean free path of gas molecules = mean free path of aerosol particles = number concentration, no. particles/cm3 = number concentration at time t = 0 n(a) N r V, = settling velocity, cm/s Greek Letters p = deposition loss constant, no. particles/s 7 = viscosity of the gaseous medium, poise K = Boltzmann constant 1.38 X ergs/"K p = linear dimension (microns), 1 0 -4 cm u9 = geometric standard deviation = inverse number concentration ( l / n ) , cms/no.= number concentration of particles of diameter a = total number of particles in the aerosol cloud = radius of the particle particles $ = polydispersity factor
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.