We present kinematically complete measurements of the photo double ionization of ethylene (double CC bond) and acetylene (triple CC bond) hydrocarbons just above the double ionization threshold. We discuss the results in terms of the coincident kinetic energy of the photo electrons and the nuclear kinetic energy release of the recoiling ions. We have incorporated quantum chemistry calculations to interpret which of the electronic states of the dication have been populated and trace the various subsequent fragmentation channels. We suggest pathways that involve the electronic ground and excited states of the precursor ethylene dication and explore the strong influence of the conical intersections between the different electronic states. The nondissociative ionization yield is small in ethylene and high in acetylene when compared with the dissociative ionization channels.The reason for such a striking difference is explained in part on the basis of a propensity rule which influences the population of states in the photo double ionization of a centrosymmetric closed shell molecule by favoring singlet ungerade and triplet gerade final states. This propensity rule and the calculated potential energy surfaces clarify a picture of the dynamics leading to the observed dication dissociation products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.