Optimal surgical positioning of cable-screw pairs in repairing periprosthetic femur fractures near the tip of a total hip implant still remains unclear. No studies in the literature to date have developed a fully three-dimensional finite element (FE) model that has been validated experimentally to assess these injury patterns. The aim of the present study was to evaluate the biomechanical performance of three different implant-bone constructs for the fixation of periprosthetic femoral shaft fractures following total hip arthroplasty. Experimentally, three bone-plate repair configurations were applied to the periprosthetic synthetic femur fractured with a 5 mm gap near the tip of a total hip implant. Constructs A, B, and C, respectively, had successively larger distances between the most proximal and the most distal cable-screw pairs used to affix the plate. Specimens were oriented in 15 degrees adduction, subjected to 1000 N of axial force to simulate the single-legged stance phase of walking, and instrumented with strain gauges. Computationally, a linearly elastic and isotropic three-dimensional FE model was developed to mimic the experimental setup. Results showed excellent agreement between experimental versus FE analysis strains, yielding a Pearson linearity coefficient, R2, of 0.90 and a slope for the line of best data fit of 0.96. FE axial stiffnesses were 601 N/mm (Construct A), 849 N/mm (Construct B), and 1359 N/mm (Construct C). FE surface stress maps for cortical bone showed maximum von Mises values of 74 MPa (Construct A), 102 MPa (Construct B), and 57 MPa (Construct C). FE stress maps for the metallic components showed minimum von Mises values for Construct C, namely screw (716MPa), cable (445MPa), plate (548MPa), and hip implant (154MPa). In the case of good bone stock, as modelled by the present synthetic femur model, optimal fixation can be achieved with Construct C.
Femoral shaft fractures after total hip arthroplasty (THA) remain a serious problem, since there is no optimal surgical repair method. Virtually all studies that examined surgical repair methods have done so clinically or experimentally. The present study assessed injury patterns computationally by developing three-dimensional (3D) finite element (FE) models that were validated experimentally. The investigation evaluated three different constructs for the fixation of Vancouver B1 periprosthetic femoral shaft fractures following THA. Experimentally, three bone plate repair methods were applied to a synthetic femur with a 5 mm fracture gap near the tip of a total hip implant. Repair methods were identical distal to the fracture gap, but used cables only (construct A), screws only (construct B), or cables plus screws (construct C) proximal to the fracture gap. Specimens were oriented in 15 degrees adduction to simulate the single-legged stance phase of walking, subjected to 1000 N of axial force, and instrumented with strain gauges. Computationally, a linearly elastic and isotropic 3D FE model was developed to mimic experiments. Results showed excellent agreement between experimental and FE strains, yielding a Pearson linearity coefficient, R2, of 0.92 and a slope for the line of best data fit of 1.06. FE-computed axial stiffnesses were 768 N/mm (construct A), 1023 N/mm (construct B), and 1102 N/mm (construct C). FE surfaces stress maps for cortical bone showed Von Mises stresses, excluding peaks, of 0-8 MPa (construct A), 0-15 MPa (construct B), and 0-20 MPa (construct C). Cables absorbed the majority of load, followed by the plates and then the screws. Construct A yielded peak stress at one of the empty holes in the plate. Constructs B and C had similar bone stress patterns, and can achieve optimal fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.