As one of the most important potential candidate alloys for vascular stent application, Mg-Y-Zr based Mg-4.2wt%Y-2.4wt%Nd-0.6wt%Ce(La)-0.5wt%Zr (WE43) alloys were investigated in combination with the forming processes of micro-tubes with 2.0 mm diameter and 0.1 mm wall thickness. Orthogonal experimental design for alloy composition, vacuum melting ingot, heat treatment, integrated plastic deformation and micro-tube forward extrusion are included in the processing procedures. Significant improvements in both the mechanical properties and corrosion resistance in phosphate buffered saline solution for WE43 alloys were achieved through this processing sequence. The influence of the heat treatment and hot extrusion on in vitro degradation and plasticity was found to be associated with grain size reduction and the redistribution of intermetallic particles within the microstructure. As a result, the mechanical properties and the corrosion resistance of Mg alloys can be improved through fine-grain strengthening and solid-solution strengthening to some extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.