Several metal plates with different thickness including copper, iron, aluminum, and stainless steel have been drilled in the surroundings of air and water, respectively, by a Q-switched pulsed Nd:yttrium–aluminum–garnet laser. It is observed that for the same metal plate less energy is needed to drill a hole in water than that in air, and the surface morphology of hole drilled in water is improved greatly than that in air by comparison of the scanning electron micrographs. The underlying mechanisms behind the efficiency and quality enhancement in water are further investigated by means of optical beam deflection technique. The experimental results show that due to the water confinement the peak amplitude and duration of the laser-ablation-generated impact underwater is much larger than that in air. During the underwater laser drilling, besides laser ablation effect, both the first and second liquid-jet-induced impulses by cavitation bubble collapse in the vicinity of a solid boundary are also observed and their amplitudes are, respectively, about 12.4 and 5.2 times that of the laser ablation impact in air. Cavitation bubbles are the special dynamic phenomenon occurring in liquids. Therefore, it is concluded that in-air-drilling laser ablation-produced impact is a dominant mechanism; while during laser underwater drilling, it is the result of a combination of ablation-produced impact effect and liquid-jet-induced impact, especially the latter. Thus, the efficiency and quality of laser processing in the surrounding water can be greatly increased and improved compared with that in air.
Vertical profiles of instantaneous cohesive suspension concentration, obtained from an acoustic suspended sediment monitor in the Changjiang Estuary, indicate that near-bed high-concentration suspensions consist of upper and lower high-concentration suspensions, separated by a natural breakpoint at ca. 2 g l\. Acoustic images revealed near-bed high-frequency resuspension events of a few seconds, which contribute mainly to the formation of the lower near-bed high-concentration suspension. Upper and lower lutoclines are also indicative of re-entrainment of lower and upper high concentration suspension, respectively. Near-bed high-frequency resuspension is caused by turbulence, while re-entrainment is probably attributable to internal wave activity.
Quasi-phase-matching optical parametric and cascaded parametric processes in a two-component quasiperiodic superlattice were studied in theory and experiment. This letter demonstrates how to obtain red at 666 nm and blue at 443 nm simultaneously from the superlattice using a 532 nm laser as a pump through these two processes mentioned above. The result confirms that some nonlinear frequency conversion processes occurring in a high-dimension χ(2) nonlinear photonic crystal may be efficiently achieved in such a one-dimension quasiperiodic optical superlattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.