Abstract. By combining a trifunctional urethane acrylate synthesized from a hexamethylene diisocyanate trimer and caprolactone acrylate with a bifunctional urethane acrylate prepared from hydroxyethyl acrylate and isophorone diisocyanate, a new reactive resin mixture was prepared, and trimethylolpropane triacrylate was chosen as the thinner to constitute a novel coating matrix. Different amounts of multi-functionalized carbon nanotubes (CNTs) and graphene oxide (GO) were introduced into the matrix and cured by ultraviolet radiation, producing different coatings. Utilizing the methods of Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, wide angle X-ray diffraction (WAXS) and thermogravimetric analysis (TGA), the chemical structures and physical properties of the coatings were analyzed. A series of ASTM methods, such as pencil hardness classification, RCA abrasion, crosscut adhesion test classification, and chemical resistance rub testing, were applied to investigate the performances of the coatings. It was found that introducing a small amount of carbon nanomaterials can improve the thermal stability, surface hardness, adhesion, abrasive resistance, and chemical resistance performance of the UV-curable coatings. The reasons and mechanisms of the performance improvements are discussed in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.