A study is presented on four polymers of the polyurethane family, obtained using a two-stage process. The first composition is the basic polymer; the others differ from it by the presence of a variety of fillers, introduced to provide radiopacity. The fillers used were 15% bismuth oxide (Composition 2), 15% tantalum pentoxide (Composition 3), or 15% zirconium oxide (Composition 4). Using a test culture of human fibroblasts enabled the level of cytotoxicity of the compositions to be determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, along with variations in the characteristics of the cells resulting from their culture directly on the specimens. The condition of cells on the surfaces of the specimens was assessed using fluorescence microscopy. It was shown that introducing 15% bismuth, tantalum, or zinc compounds as fillers produced a range of effects on the biological characteristics of the compositions. With the different fillers, the levels of toxicity differed and the cells’ proliferative activity or adhesion was affected. However, in general, all the studied compositions may be considered cytocompatible in respect of their biological characteristics and are promising for further development as bases for bone-substituting materials. The results obtained also open up prospects for further investigations of polyurethane compounds.
The aim of the study was to develop a new method of vertebral augmentation based on autologous and allogeneic bone chips to be used in pedicle screw fixation and to compare this method with the technique based on polymethyl methacrylate (PMMA). Materials and Methods This prospective non-randomized study included 164 patients with degenerative pathologies or traumatic injuries of the lumbar spine and transitional thoracolumbar segments; 153 of the operated patients were followed up for 18 months. In these patients, radiodensity of the cancellous bone tissue was below 110 HU by the Hounsfield scale. Patients with degenerative spinal disorders underwent pedicle screw fixation using transforaminal interbody fusion; patients with traumatic spinal injuries underwent intermediate pedicle screw fixation, and those with a loss of vertebral body height by >50% underwent anterior fusion. The patients were divided into three groups: in group 1 (n=39), bone tissue augmentation was performed using PMMA; in group 2 (n=21), augmentation was done with bone chips; in group 3 (n=93), no augmentation was performed (control group). The follow-up period was 12 months; cases with fixator breakage or loosening were recorded. Results After augmentation with PMMA, 11 cases (28.2%) of fixator destabilization were detected. With bone chips, fixator instability developed in 2 patients (9.5%) only, whereas in patients operated without augmentation, the instability was observed in 43 cases (46.2%). With PMMA augmentation, the incidence rate of fixator destabilization did not significantly differ from that in the control group (p=0.0801), while the use of bone chips resulted in a statistically significant decrease of this index compared to the control group (p=0.0023). A logistic regression analysis confirmed the superiority of the developed method over the PMMA-based vertebral augmentation. Conclusion The use of bone chips for vertebral augmentation provides a statistically significant decrease in the incidence of pedicle screw fixator destabilization in the post-operative period. By reducing the risk of proximal loosening and eliminating the risk of bone cement drainage into the spinal canal and vascular bed, the proposed method may become especially effective in patients with impaired bone density.
BackgroundDifferent fusion techniques were introduced in clinical practice in patients with lumbar degenerative disc disease, however, no evidence has been provided on the advantages of one technique over another.The Objective of This StudyIs to assess the potential impact of circumferential fusion employing transforaminal lumbar interbody fusion (TLIF) vs. direct lateral interbody fusion (DLIF) on pedicle screw stability.Materials and MethodsThis is a single-center prospective evaluation of consecutive 138 patients with degenerative instability of lumbar spinal segments. Either conventional transforaminal lumbar interbody fusion (TLIF) with posterior fusion or direct lateral interbody fusion (DLIF) using cages of standard dimensions, were applied. The conventional open technique was used to supplement TLIF with pedicle screws while percutaneous screw placement was used in patients treated with DLIF. The duration of the follow-up accounted for 24 months. Signs of pedicle screws loosening (PSL) and bone union after fusion were assessed by the results of CT imaging. Fisher‘s exact test was used to assess the differences in the rate of CT loosening and revision surgery because of implant instability. Logistic regression was used to assess the association between potential factors and complication rate.ResultsThe rate of PSL detected by CT and relevant revision surgery in groups treated with TLIF and DLIF accounted for 25 (32.9%) vs. 2 (3.2%), respectively, for the former and 9 (12.0%) vs. 0 (0%) for the latter (p < 0.0001 and p = 0.0043) respectively. According to the results of logistic regression, a decrease in radiodensity values and a greater number of levels fused were associated with a rise in PSL rate. DLIF application in patients with radiodensity below 140 HU was associated with a considerable decrease in complication rate. Unipolar or bipolar pseudoarthrosis in patients operated on with TLIF was associated with a rise in PSL rate while patients treated with DLIF tolerate delayed interbody fusion formation. In patients treated with TLIF supplementary total or partial posterior fusion resulted in a decline in PSL rate.ConclusionEven though the supplementary posterior fusion may considerably reduce the rate of PSL in patients treated with TLIF, the application of DLIF provide greater stability resulting in a substantial decline in PSL rate and relevant revision surgery.
The study objective is to estimate treatment success of gamma knife radiosurgery (GKRS) in the patients with subtentorial cavernous malformation (CM) based on follow-up data and magnetic resonance imaging (MRI).Materials and methods. The long-term follow-up of GKRS in 87 patients with CM in brain stem and cerebellum was obtained. The clinical outcomes were observed using phone-based SF-36 health status survey in 55 patients. MRI data was collected before and after GKRS within 1, 2, 3 and more years. The natural history of CM without GKRS were observed in 20 patients.Results. The 1st year MRI observation after GKRS have demonstrated CM reduction in 66,6 % patients. At subsequent MRI-control the tendency of increase in number of CM, reacted on irradiation, and continuation of started processes of its sclerotization is revealed. The fast reduction of CM sizes was associated with lower risk of recurrent hemorrhages, that were observed in 3 patients with slow reduction. The CM reduction was also associated with good clinical outcomes, that was observed in 64,5 % patients.Conclusion. The presence of CM reduction (72,4 %) and good clinical outcome in suggests GKRS as a frontline treatment modality in patient with subtentorial CM. In the cases of slow rate of treatment response and unexpired risk of repeated hemorrhage no mortality and significant disability were mentioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.